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2.1 Introduction

Recent advances in epitaxial growth and processing technologies have enabled us to
fabricate semiconductor nanostructures whose dimensions are comparable to the de Broglie
wavelength of electrons. Transport measurements on these nanostructures have revealed a rich
variety of phenomena associated with the effects of quantum mechanical confinement1).
Conductance quantization in one-dimensional quantum point contacts, and resonant tunneling
through quantum wires and quantum boxes are such examples. These properties directly reflect
the quantization of energy. In addition, charge quantization is observed for tunneling through a
small dot, which acts as an island for electrons. When tunneling occurs, the charge on the island
suddenly changes by a quantized amount namely “e”. This leads to the change in the electrostatic
potential of the dot by the charging energy, Ec=e2/C, where C is the typical capacitance of the
island. The one-by-one change in the number of electrons on the island gives rise to oscillations in
the tunneling conductance (Coulomb oscillations) when the gate voltage is swept. These
oscillations are usually periodic when the number of electrons is “large”. However, in a small dot
holding just a few electrons, the charging energy can no longer be parameterized in terms of a
constant capacitance, and the Coulomb oscillations are significantly modified by electron-electron
interactions and quantum confinement effects. Both the quantized energy level spacing, and the
interaction energy become large when the dot size is decreased, and can be similar when the dot
size is comparable to the electron wavelength. Thus, the addition energy needed to put an extra
electron on the dot becomes strongly dependent on the number of electrons in the dot. Such a
system can be regarded as an artificial atom.2) We show in 2.2 that the addition energy spectrum
of an artificial atom reflects atom-like features such as a shell filling and the obeyance of Hund’s
first rule when the dot has a high degree of cylindrical symmetry. Such a dot has only recently
been developed by using a sub-micorn diameter double barrier heterostructure in which a circular
disk-shaped dot is located.  3,4) The shell structure arises from the single-particle level degeneracy
imposed by the two-dimensional (2D) harmonic potential in the circular dot. In the presence of a
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magnetic field, the interaction effects become more important than the quantum mechanical
effects in determining the configuration of the ground state (GS), and this leads to transitions in
the GS configuration. We use an excitation spectroscopy technique in 2.3 to study the
contributions of the many-particle interactions in these transitions in the GS. The atom-like
electronic properties described are all dependent on the cylindrical symmetry of the dot. By
breaking the cylindrical symmetry, the atom-like properties should be significantly modified. In
2.4 we present a new device which enables an in situ control of the symmetry in the confining
potential. The remaining sections are devoted to transport studies on double quantum dot
systems which behave like artificial molecules. When two dots are quantum-mechanically
strongly coupled via a tunnel junction, an electron can oscillate coherently back and forth
between the two dots. This gives rise to two delocalized electronic states, i.e. a symmetric and an
anti-symmetric state, which are separated by the tunnel coupling energy. The number of
electrons is uniquely defined for the whole two dot system. On the other hand, when two dots
are quantum-mechanically weakly coupled, the electronic states are usually localized in each dot.
The number of electrons is then defined for each dot. Nonetheless, the respective electron
numbers are still regulated by the electrostatic coupling between dots. We discuss the energy
spectrum of two dot systems with strong or weak quantum mechanical coupling when the two
dots are vertically connected in 2.5, and when they are laterally connected in 2.6. We use a triple
barrier heterostructure to fabricate a vertically coupled molecule. In this configuration, two
identical circular dots are connected to each other via an abrupt thin heterostructure potential
barrier (see Fig. 2.14). This vertical tunnel coupling produces sets of states, either delocalized
throughout the two dots, or localized in each dot separately. Each of the vertical dots has the
same lateral states confined by a 2D harmonic potential. Electron filling is well distinguished
between for the strongly coupled case, and the weakly (or electrostatically) coupled case. On the
other hand, we use a modulation doped 2D heterostructure to fabricate a laterally coupled double
dot molecule. Two dots are separately confined by Schottky gates placed on the surface and
connected in plane via a Schottky gate induced electrostatic potential barrier (see Fig. 2.21). The
coupling between the two lateral dots can produce a number of coupled states, while there is a
single electronic (occupied) state in the vertical direction of each dot. The coupling strength, and
charge configurations in the two dots, can be tuned in situ using the Schottky gates. We use a
microwave technique to probe the energy spectrum of the coupled dot states. We discuss the
coherent or elastic tunneling between two delocalized states, while for two localized states, we
discuss the inelastic tunneling which is energetically coupled to the environment.

2.2 Quantum Dot Atoms

2.2.1 Single electron tunneling spectroscopy
The energy spectrum of a quantum dot can be probed using the single electron tunneling

spectroscopy technique. Let us consider the quantum dot depicted in Fig. 2.1(a). The dot is only
weakly coupled to the reservoirs (source and drain). The gate electrode is electrostatically or
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capacitively connected to the dot, and can be used to tune the electrostatic energy of the dot. We
measure the tunneling current flowing through the dot for an arbitrarily small voltage applied
between the source and drain: Vsd = (µs -µd)/e, where µs and µd are the electro-chemical potentials
in the source and drain, respectively. Tunneling current, I, can only flow when a dot state is
between the Fermi energies of the source and drain: µs > µdot(N) > µd, where µdot is the electro-

chemical potential of the dot, and is defined as µdot(N) = U(N) - U(N-1), where U(N) is the total
energy of the N-electron GS. Zero and non-zero tunneling current can be observed as a function
of gate voltage Vg, and the resulting current versus gate voltage (I-Vg) shows a series of peaks,
corresponding to the one-by-one change in the number of electrons on the dot. Each current peak
effectively measures µdot(N), and the spacing between the peaks measures the increment of

µdot(N), i.e. ∆µdot(N) = µdot(N+1) - µdot(N).
     If we assume that the quantum levels can be calculated independently of the number of
electrons on the dot, and also that the interaction energy can be parameterized with a constant
capacitance, then ∆µdot(N) is given by

     ∆µdot(N) = ∆E + e2/C,                            (2.1)

where ∆E = EN+1 –EN is the single-particle level spacing between states with energies EN+1 and EN

(Fig. 4.1(b)). Note that ∆E = 0 when EN+1 and EN are for spin-degenerate states. This can lead to
an even-odd asymmetry in the energy spectrum with respect to the number of electrons in the
dot. In a many-electron system the level spacing is much smaller than the interaction energy, and
a constant capacitance can be used to describe the interaction energy, so that ∆µdot(N) (= e2/C ) is
constant with N. On the other hand, in a few-electron system, the level spacing becomes
comparable to the interaction energy, and the constant capacitance model no longer holds due to
the contributions of the many-particle interactions. This can significantly modify the pattern of
spacings between the Coulomb oscillations.
 
2.2.2 Planar and vertical single electron transistors

Single electron tunneling spectra have been extensively studied for small semiconductor dots
using so-called single electron transistors (SETs) with many different geometries and
configurations. This is particularly true for SETs with a planar geometry defined in a two-
dimensional gas by surface Schottky gates (see Fig. 2.20 (a) and Fig. 2.21). The lateral
constriction forming the dot, the tunnel junctions between the dot and the reservoirs, and the
plunger gate to tune the electrostatic potential of the dot are all made by applying voltages to
Schottky gates. This enables a wide variation of device geometry and a large freedom of gate
operation for tuning the transmission probability of the tunnel junctions as well as the electron
number in the dot. In addition, the fabrication technology is well developed. However, there are a
number of limitations. For example, the geometry of the dot is not so well defined, since the
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actual confining potential imposed by the Schottky gates can be significantly different from that
of the gate geometry. In addition, it is almost impossible to fabricate a dot containing just a few
electrons. In contrast, due to the presence of heterostructure barriers and vertical side walls, the
dot in a vertical SET can have both good shape and high symmetry (see Fig. 2.2). Such a vertical
SET enables a precise tuning of the electron number in the dot, starting from zero. The
fabrication technology has only recently been developed.3) In the following sections, we use a
vertical SET to study atom-like electronic properties of artificial atoms. For quantum dot
molecules, we use such a vertical SET containing a stack of two disk-shaped quantum dots to
study the effect of quantum mechanical coupling. We also use a planar SET containing two
coupled quantum dots defined by surface Schottky gates to perform special measurements, e.g.
microwave excitation spectroscopy. In the vertical SET, some important parameters such as the
tunneling probability between the dot and the nearest reservoir and the tunnel coupling between
the dots are not tunable. In contrast, in the planar SETs both are tunable. In addition, it is
possible to adjust the electrostatic potential of each dot independently by changing two gate
voltages. We use this capability to study electron transport between two zero-dimensional (0D)
states on-resonance and off-resonance.

2.2.3 Atom-like properties of a disk-shaped quantum dot
Clean quantum dots with a regular disk shape have only recently been fabricated in a

semiconductor heterostructure.3,4) This subsection presents the electronic properties of such
disk-shaped quantum dots containing just a few electrons. We show that the GS energy spectrum
reflects atom-like properties.

Electrons bound to a nuclear potential experience sufficiently strong quantum mechanical
confinement and Coulomb interactions that they are well arranged in ordered states. This leads to
the well-known ordering of atoms in the periodic table. The ionization energy has large maxima
for atomic numbers 2, 10, 18, ... when shells are completely filled with electrons. In addition, for
the filling of electrons in similar orbitals, parallel spins are favored until the set of orbitals is half
filled, as would be expected from Hund`s first rule. This also gives rise to secondary maxima in
the ionization energy.5) A good analogue to the three-dimensional shells in atoms can be realized
for artificial atoms with the shape of a circular disk. The disk-shaped quantum dots we can
fabricate are formed in a laterally gated micron-sized double barrier structure, and contain a
tunable number of electrons starting from zero. If the lateral confinement has the form of a
harmonic potential, the eigen-energy En,l for the lateral states is expressed using two orbital
quantum numbers: the radial quantum number n (= 0, 1, 2, ···) and the angular momentum
quantum number   l  (= 0, ±1, ±2, ···) to

　　  En,l = (2n + l +1)hω0 ,　　　　　　　　　　(2.2)
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where hω0 is the lateral confinement energy. Here we neglect the Zeeman effect, so each state is
spin-degenerate. En,l are systematically degenerate from the lowest level: so including spin
degeneracy, the first, second, and third shells respectively are two-fold degenerate with E0,0 (1s
orbital), four-fold degenerate with E0,1 = E0,-1 (2p orbital), six-fold degenerate with E0,2 = E0,-2 (3d
orbital) = E1,0 (3s orbital). For non-interacting electrons, these states are consecutively filled from
the lowest, and complete filling of each set of degenerate states is attained for special electron
numbers of N = 2, 6, 12, 20, etc. These are the “magic numbers” that characterize the shell
structure. For interacting electrons, the degeneracy is lifted due to the Coulomb interactions.
However, when the quantum mechanical confinement energy is comparable to or greater than the
interaction energy, the above shells are still consecutively filled from the lowest, so that we can
still see the same series of magic numbers as for the non-interacting case. In addition, for the
filling of electrons in the same shell, parallel spins are favored in accordance with Hund’s first
rule. This leads to another series of magic numbers of N = 4, 9, 16, … corresponding to the half
filling of the second, third, fourth (and so on) shells, respectively.

We use a resonant tunneling structure to fabricate a disk-shaped quantum dot. The device
configuration is schematically shown in Fig. 2.2. The scanning electron microscope image shows
the actual shape of the device mesa. A single quantum dot is located inside each sub-micron
cylindrical mesa made from a double-barrier structure (DBS), which consists of an undoped 12
nm-In0.05Ga0.95As well and two undoped Al0.22Ga0.78As barriers of thickness 9.0 and 7.5 nm. On
either side of the double barrier structure there is an n-doped GaAs contact. The source and drain
electrodes are placed on the top of the mesa and on the bottom of the n-GaAs substrate. The
third electrode is a Schottky gate, which is wrapped around the mesa. The current I flowing
vertically through the dot is measured as a function of gate voltage Vg in response to a dc voltage
Vsd applied between the contacts.

Figure 2.3 shows the current oscillations (Coulomb oscillations) observed for a device
with a geometrical diameter of D = 0.5 µm.4) A small bias of 0.15 mV is set for Vsd, so that only
the GSs contribute to the current. The absolute values of N can be identified in each zero-current
region (Coulomb blockade region) between the peaks, starting from N = 0, because for Vg < -1.6
V no further current peaks are observed, i.e. the dot is empty. When N becomes smaller than 20,
the oscillation period depends strongly on N. In contrast, Coulomb oscillations observed for a
large dot containing more than 100 electrons look very periodic. The current peak to the left of a
Coulomb blockade region with N trapped electrons thus measures the N-electron GS electro-
chemical potential µ(N). For example, the first, second and third peaks from the left measure the
one, two and three electron GS electro-chemical potentials, respectively. The peak spacing
labeled by “N” therefore corresponds to the increment of electro-chemical potential, ∆µ(N+1) =

µ(N+1) - µ(N). ∆µ(N+1), which can also be determined from measurement of the widths of the

so-called “Coulomb diamonds”. ∆µ(N+1) is plotted as a function of N in Fig. 2.4. In

correspondence with the spacings between the Coulomb oscillations, ∆µ(N+1) is unusually large
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for N = 2, 6 and 12, and is also relatively large for N = 4, 9 and 16 (see arrows in Fig. 2.3). The
values of 2, 6 and 12 arise from the complete filling of the first, second and third shells,
respectively, while those of 4, 9 and 16 are due, respectively, to the half filling of the second,
third and fourth shells with parallel spins in accordance with Hund’s first rule. The 2-
dimensional (2D) shell structure obtained in the disk-shaped quantum dot is also pictorially
illustrated in Fig. 2.4. The addition energy spectrum is well reproduced by calculations of exact
diagonalization method. The distribution functions for the 1s, 2p, 3s, and 3d orbitals in the 2D
shell structure are included in Fig. 2.4.

2.3 Effects of a Magnetic Field

2.3.1 Fock-Darwin states
In real atoms, electrons are so strongly trapped that their quantum mechanical properties

cannot be strongly  modified under normal experimental conditions, for example, by applying a
magnetic field. In contrast, the electrons in our quantum dots are bound in a relatively large region
of the order of 100 nm. This allows us to use readily accessible magnetic fields, not only to
identify the quantum mechanical states, but also to induce transitions in the ground states whose
counterparts in real atoms can never be tested on earth.

The eigen-states for a 2D harmonic quantum dot are the Fock-Darwin (FD) states.6) The
eigen-energies at B = 0 T, i.e. En,l in Eq.(2.1), are modified in the presence of a magnetic field (B-
field) parallel to the tunneling current to

   
En,l = −

l
2

hω c + (n +
1

2
+

1

2
l)h 4ω0

2 +ω c
2

,       (2.3)

where hωc = eB/m* is the cyclotron energy. Figure 2.5 (a) shows En,l versus B calculated for hω0 =
3 meV, which is deduced from a comparison with the experimental data. Spin-splitting is ignored
so each state is two-fold degenerate.4) The orbital degeneracy at B = 0 T is lifted on increasing B,
reflecting the first term of Eq. (2.3). As B is increased further, new crossings can occur. The last
crossing occurs along the bold line in Fig. 2.5(a). Beyond this crossing, the FD-states merge to
form the lowest Landau level.
     Figure 2.5 (b) shows the B-field dependence of the position of the current oscillations
shown in Fig. 2.3.4) We take into account the interaction energy as well as the FD diagram when
examining the experimental data. The current peaks generally shift in pairs with B. This pairing is
due to the lifting of spin degeneracy. So from the shift of the paired peaks on increasing B, we
assign quantum numbers to the respective pairs. For example, the lowest, second lowest, and
third lowest pairs correspond to the filling of electrons in the FD states (n,ℓ) = (0, 0), (0, -1),
and (0, 1) with anti-parallel spins, respectively. Thus, the wiggles or anti-crossings between pairs
of peaks correspond to the crossings of FD states. For example, the anti-crossing at the ＊ point
corresponds to the crossing of the FD states (0, -1) and (0, 2). However, from close inspection of
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the second and third lowest pairs of peaks in the vicinity of B = 0 T, we find that the pairing is
modified in line with Hund’s first rule (Fig. 2.5(c)). This is discussed in detail in 2.3.3. The last
wiggle of each pair of peaks appears along the dashed line, which corresponds to the bold line in
Fig. 2.5(a). Beyond this line, all electrons are in the spin-degenerate lowest Landau level. This line
also identifies filling factor ν = 2. For ν < 2, we see various other transitions associated with B-
field enhanced Coulomb interactions. We now focus on such transitions.

2.3.2 Transitions in the ground state
Figure 2.6(a) shows the B-field dependence of the first five current peaks for Vsd = 0.1

mV.7) Besides the overall smooth shift in the peaks, we see several kinks, which we have
identified with different labels. These kinks are assigned to transitions in the GSs from a
comparison to the calculations shown in Fig. 2.6(b).8) This is an exact calculation of the GS
electro-chemical potentials for N = 1 to 5 as a function of the B-field. The electro-chemical
potentials for N > 1 show upward kinks; more kinks for the larger N. At each upward kink, the
electro-chemical potentials for two different configurations with the same electron number cross
one another. The configuration with the lower electro-chemical potential always forms the GS.
That is, the GS undergoes a transition at each up ward kink. These transitions occur in such a
way that the total spin, S, as well as the total angular momentum, M, are maximized in the
consecutive transitions. For example, for the N = 2 GS, two electrons occupy the same orbital
state (n,ℓ) = (0,0) with anti-parallel spins implying S = 0 and M = 0 to the left of the kink,
whereas they occupy the different orbital states (0,0), and (0,1) with parallel spins implying S = 1
and M = 1 to the right of the kink. This is the so-called spin singlet-triplet transition. For the N =
3 GS transition, the transition accompanies a change of (M, S) from (1, 1/2) to (2, 1/2), then to (3,
3/2). These transitions are indeed observed in the experiment. In this manner, for the regions
between the kinks, we can identify the quantum numbers, including the spin configurations.

2.3.3 Spectroscopy of ground and excited states
To investigate the configurations of the GSs and ESs responsible for the kinks observed in

Fig. 2.6(a), we use the excitation tunneling spectroscopy technique.7) A large voltage of Vsd = 5
mV is now applied between the source and drain. This voltage opens a sufficiently wide transport
window between the Fermi levels in the source and drain that both the GSs and ESs can be
detected. As Vg is made more positive, first the GS alone, and then the first few ESs can contribute
to the current for any given N . I versus Vg and B for the N = 1 and 2 GS and ESs is shown in Fig.
2.7.7) For this particular value of Vsd, the two stripes just touch at B = 0 T. The lower edge of
each stripe (indicated by the white dashed curve) is the GS. Inside the first stripe, a pronounced
current change is observed near the black dashed curve labeled (n,ℓ)=(0, 1). This curve enters the
upper edge of the first stripe at B = 0.2 T. This change identifies the position of the first excited
state for the N = 1 dot. Note that at higher B values, two higher excited states (black dashed
curves) also enter from the upper edge of the stripe at 5.7 and 9.5 T, respectively. The energy
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separation between the GS (white dashed curve) and the first ES (black dashed curve labeled (0,
1)) can be read directly from the relative positions inside the first stripe, so the excitation energy
is slightly larger than 5 meV at B = 0 T, and then decreases on increasing B. Note that even over
this wide magnetic field range of 16 T, the first ES never crosses with the GS. In the second stripe
in Fig. 2.7, however, we see the first ES crossing with the GS at B = 4.15 T, i.e. the first ES for B
< 4.15 T becomes the GS for B > 4.15 T. Located exactly at this B-field is the kink attributed to
the singlet-triplet transition in Fig. 2.6(a), so it is assigned to a crossing between the GS and the
first ES. In a similar fashion, we are able to identify crossings between GSs and ESs at each kink
in Fig. 2.6(a).

The last crossing we discuss is indicated by 5 in Figure 2.6(a). This crossing is a
manifestation of Hund’s first rule as described in 2.3.1. As the adjacent configuration diagrams
show, there is a transition such that the third and fourth electrons go from having parallel spins to
anti-parallel spins. When the states (n,ℓ)=(0, 1) and (0, -1) are sufficiently close, the energy gain
due to the exchange interaction between electrons with parallel spin favors a high-spin state.4)

When B is increased, (0, 1) and (0, -1) move away from each other (see Fig. 2.6(a)), and at a
particular value, a transition is made to an anti-parallel spin state where the third and fourth
electrons both occupy (0, 1). Figure 2.8 shows a surface plot of the N = 4 stripe measured at Vsd

= 1.6 mV.7) This surface plot clearly shows the B-field dependence of the single-particle states
(0,1) and (0, -1) including the crossing between the GS (white dashed curve) and the ES (black
dashed curve) at 0.4 T.

2.3.4 B-N phase diagram for the few-electron ground states
Figure 2.9 summarizes pictorially the configurations of the few-electron and many-electron

GSs in the plane of B and N. At B = 0 T, Hund’s first rule accounts for the high-spin states
within a given shell. As the B-field is initially applied, these parallel-spin states disappear, and
consecutive anti-parallel filling of electrons into spin degenerate states becomes widespread. As
the B-field is increased still further, crossings of the FD states give rise to frequent changes in the
GS configuration. Very recently, we have found that at each crossing of FD states, a GS with
parallel spins is favored in line with Hund’s first rule. The last crossing of the FD states occurs at
ν = 2. For 2 > ν > 1, a sequence of N/2-spin flips is expected to lead to a sequential increase in the
total spin of the N-electron GS from 0 to N/2, i.e. resulting in full spin polarization of the N-
electron dot at ν=1.  A self-consistent charge distribution in the dot results in a compressible
center (second lowest Landau level partially filled) being separated from a compressible edge (first
lowest Landau level partially filled) by an incompressible “ring” in which the lowest Landau level
is completely filled.9) Sequential depopulation occurs as electrons transfer across the ring from
spin-down sites at the center to spin-up sites at the edge (see Fig. 2.5(c)). At ν=1, a maximum
density droplet (MDD) is formed.1,10) This is spatially the most compact state of spin-polarized
electron droplet. All N-electrons are in the lowest Landau level, and occupy sequentially the up-
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spin states (n,ℓ)=(0, 0), (0, 1), ..., (0, N-1) without any vacancies. The detailed experiments on
the spin-flip phase, and the MDD phase in our disk-shaped dot are discussed in Refs. 9 and 11.

2.4 Manipulation of the Lateral Potential Geometry of a Vertical Dot

In 2.2.3 we described the atomic-like properties of artificial atoms observed by measuring
Coulomb oscillations in disk-shaped dots.4) Associated with the rotational symmetry of the
circular dot, a “shell” structure, a pairing of the conductance peaks, and modifications predicted
by Hund’s first rule, are observed. This “conventional” single dot vertical structure is made from
a DBS by surrounding an “isolated” etched sub-µm mesa with a single gate.3) For a cylindrical
mesa, this single gate “squeezes” the dot uniformly so that the rotational symmetry of the lateral
confining potential is maintained.

In this section, we describe the characteristics of Coulomb oscillations when the mesa
forming the vertical dot is non-circular.12,13) Such non-circular mesas can be examined with a single
gate,12) but multiple independent gates for vertical dots are, in principle, more desirable as they
offer greater control. We outline a new technology for fabricaring novel vertical SETs with
separate gates which allows the effect of systematically manipulating both the extent and
geometry of the lateral confining potential on the electronic states in the dot, and related
phenomena, to be probed.13) It is worth stressing that single-particle states in a quantum dot are
very sensitive (far more sensitive than “classical” charging energy) to the geometry of the lateral
confining potential.

Figure 2.10 shows a schematic view of a typical device. Full details of the concept,
fabrication, and demonstrations of separate gate operation are described elsewhere.3,13) Four
separate Schottky gates (labeled A, B, C and D) surround the central square mesa at the center of
the “cross”. Current I can only  flow vertically from the substrate to the top contact metal pad up
through the square mesa because the top contact metal pad is sitting on silicon oxide, and the
semiconductor regions in the 0.2 µm wide top contact metal line mesas (α), and gate “splitter”

line mesas (β) are always “pinched-off”. The specially designed DBS is the same as that shown in
Fig. 2 .2.4) The configuration of one particular square mesa is also shown in Fig. 2.10. Coulomb
oscillations are measured at small drain bias as a function of voltages VgA, VgB, VgC, and VgD on the
four gates. Gate A (C) and gate B (D) are diametrically opposite. We choose to alter the gate
voltages such that VgA =VgB and VgC =VgD. It should then be possible to controllably deform the
geometry of the lateral confining potential from “square”-like (far from “pinch-off” when there
are “many” electrons), or “circular”-like (close to “pinch-off” when there are only a “few”
electrons), when VgA (=VgB) =VgC (=VgD), to “rectangular”-like or “elliptical”-like, when VgA

(=VgB) is more negative than VgC (=VgD). If all gates are equivalent then the gate configuration we
adopt should fix the dot center at the center of the “cross”. In practice, the gates are not all
equivalent,13) but unless the gates are grossly different this principle of operation is a good first
approximation.
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Figure 2.11 shows a “map” of the conductance peak positions of a 0.8 µm square device.
Each horizontal slice of the map is obtained by sweeping VgA and VgB together from 0.4 to -2 V at
constant VgC (=VgD).13) Each peak is represented by a black mark. As VgC and VgD are varied
together from 0.4 to -2 V, the dot is more strongly “squeezed”, so the position of each peak shifts
systematically to more positive VgA (=VgB). To read the “map” and observe the corresponding
peaks in each slice, the “map” should be viewed along the direction indicated by the two dotted
parallel lines in the top right-hand corner. These two dotted lines actually mark the movement of
two neighboring peaks. Because the voltage increment along the VgC (=VgD) axis is not too large, it
is straightforward to identify corresponding features in neighboring horizontal slices from the
patterns in both peak height and relative position, and the presence of unusually large gaps
between some of the peaks.13) It is thus possible to arbitrarily define sets of orthogonal voltage-
vectors in VgA (=VgB) -VgC (=VgD) space: Vg1 vectors, along which the dot is “squeezed” equally in
the same sense by all four gates, and electrons are most efficiently removed from, or added to, the
dot (Vg1 vectors are perpendicular to the two parallel dotted lines); and Vg2 vectors along which
gate action for gates A and B, and gate action for gates C and D are in an opposite sense, without
changing, at the first approximation, the area of the dot (Vg2 vectors are parallel to the two parallel
dotted lines). In other words, by applying voltages to the four gates along Vg1 and Vg2 voltage-
vectors respectively, it is possible to probe separately how the dot size and dot shape affect the
appearance of the current oscillations. Translation along a Vg1 voltage-vector changes the area of
the dot, but preserves the geometry, and is equivalent to the gate action of “conventional” vertical
dots surrounded by a single gate. Generally, moving along a voltage-vector Vg1 from the bottom
left hand corner of Fig. 2.11 (number of electrons in dot ≈90) to the top right hand corner (number
of electrons in dot ≈10), the average spacing between neighboring conductance peaks, which is
related to the “classical” charging energy, increases steadily. This average spacing is not
particularly sensitive to a translation along a Vg2 voltage-vector, because the area of the dot
remains almost constant. On the other hand, the actual spacing between neighboring conductance
peaks, which is very much dependent on the nature of the single-particle states involved, can be
very sensitive to such a translation, leading to deformation of the dot. A translation along a Vg2

voltage-vector represents a new mode of operation that is not possible with a single-gated vertical
dot.

Figure 2.12 shows a vector scan through the “map” in Vg1 -Vg2 space over the region
defined by points M, N, and P in Fig. 2.11.13) With the systematic shift to more positive VgA

(=VgB) in Fig. 2.11 eliminated, the conductance peaks generally run vertically as Vg2 is varied.
Residual deviations or “wiggles” in the conductance peak positions can now be clearly observed
and these reflect the sensitivity of the single-particle states to the dot geometry. The opening and
closing of unusually large gaps between some conductance peaks signifies that the underlying
“shell” structure is changing as the dot is deformed. We can distinguish, for example, along trace
EE´ a “shell” consisting of eight peaks bounded by two large gaps (large gaps are marked by “•”).
Moving to trace FF´, the positions of the gaps have changed. Since the number of electrons in the
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dot is more than 20, Hund’s first rule alone cannot account for the large gaps. Because the dot is
still quite “large”, it is only possible to probe the “shell” structure when there are “many”
electrons in the dot. Nevertheless, the effective dot size is comparable to the Fermi wavelength,
so quantum effects are still important. Due to the non-circular nature of the lateral confining
potential, and the presence of electron screening, there is as yet no theory that accounts for the
exact details.

Another important observation related to Fig. 2.12 is that pairs of conductance peaks can
be identified (each pair marked by “#”), i.e. the positions of the conductance peaks forming a pair
are directly related as Vg2 is varied, and large gaps (“•”) occur between pairs of peaks and not
between peaks belonging to the same pair. This pairing of the conductance peaks is due to spin-
degeneracy, and is insensitive to geometric distortions of the dot. Conservation of peak-pairing
and the alteration of the “shell” structure with geometric distortion can be further demonstrated
by following the B-field dependence of the positions of conductance peaks along different Vg1

voltage-vectors. Figure 2.13 shows the B-field dependence up to 0.9 T along three different Vg1

voltage-vectors x, y, and z. These three vectors are indicated in Fig. 4.11.13) All traces have been
shifted horizontally so that an arbitrarily chosen “reference peak” is aligned, and its position is
independent of the B-field and the choice of Vg1 voltage-vector. Pairs of peaks are labeled +III,
+II, +I, 0, -I, and -II. Analysis of the three sets of traces for x, y, and z confirms that peak-pairing
is a basic intrinsic property, generally robust to geometric distortions of the dot. On the other
hand, the pattern of “wiggles” of individual peaks, or equivalently pairs of peaks, are dissimilar,
which indicates that the underlying dot geometry and thus the nature of the single-particle states
is very different.

2.5 Quantum Dot Molecules

In 2.2.3 we described the atomic-like properties of single artificial semiconductor atoms in
high-quality disk-shaped vertical quantum dots containing a tunable number of electrons.4)

Knowledge of the attributes of a single quantum dot is invaluable for understanding single electron
phenomena in more complex quantum dot systems. We now outline how vertically coupled disk-
shaped dots can be employed to study the electronic states in quantum dot molecules.

Let us consider two quantum dots, in each of which charge quantization and energy
quantization are well defined. If two 0D states, one state from one well and one state from the
other well, are quantum-mechanically strongly coupled, an electron can oscillate back and forth
coherently between the two dots. In this case, the charge number state of each dot is no longer a
well-defined integer, while the total charge number is still a well-defined integer. The coupled
states are delocalized over the two dots, and the eigen-functions are superpositions of the states
in each dot, ψ1 andψ2, in a symmetric and an anti-symmetric way, i.e. ψS = (ψ1 + ψ2)/√2 and

ψAS = (ψ1 - ψ2)/√2 when the states are energetically aligned. If there is an energy mismatch, ε,

between the two states, the delocalized states are generally given by ψ1 sinθ + ψ2 cosθ (tanθ =



S, Tarucha, David Guy Austing, Toshimasa Fujisawa: Electron Transport in Semiconductor Quantum Dots
Optical and Electronic Process of Nano-matters
ed. By T. Kamiya, Advances in Optoelectronics, Kluwer Co, to be published

PREPRINT- 12

(∆SAS -ε)/2hTc), where Tc is the coherent tunneling rate, and ∆SAS (=√(ε2+4Tc
2)) is the energy

splitting between the symmetric and anti-symmetric states. In a vertical device, two disk-shaped
dots are stacked on top of each other and are separated by a thin heterostructure potential barrier.
The quantum mechanical coupling between the dots generates a symmetric state and an anti-
symmetric state in the vertical direction. Both of the symmetric and anti-symmetric states are
confined laterally by a parabolic potential. In 2.5.2 we discuss the electronic properties of a
quantum mechanically “strongly” coupled double dot molecule in the vertical configuration, and
likewise in 2.5.3 for a quantum mechanically “weakly” coupled double dot molecule. The
electronic states in the latter are usually localized. Nevertheless, the “weakly” coupled dots are
still coupled electrostatically, and this can lead to a pairing of conductance peaks.

2.5.1 Double dot molecules - vertical configuration
A vertically coupled quantum dot molecule can be realized in a geometry similar to that of

a single disk-shaped quantum dot (see Fig. 2.2), but the DBS is replaced by a triple barrier
structure (TBS).14) The InGaAs wells are 120 Å wide, and the outer AlGaAs barriers are
typically about 70 to 80 Å wide. The inset of Fig. 4.14 shows a schematic section through such a
gated mesa of geometric diameter D. The drain current is measured as a function of drain voltage,
Vsd, and gate voltage Vg much like a single dot.

By changing the thickness of the central Al0.2Ga0.8As barrier b from 75 Å to 25 Å we are
able to increase the energy-splitting between symmetric and anti-symmetric states, ∆SAS, from
about 0.09 to 3.4 meV. Quantum mechanically, we consider the dots separated by the 75 Å
barrier to be “weakly” coupled, and the dots separated by??the 25 Å barrier to be “strongly”

coupled. Figure 2.14 shows how (SAS(ε = 0) varies with b based on a simple flat-band model
calculation with a material-dependent effective mass. As a rough guide, for the case of two
electrons trapped in the system (N = 2), a typical “bare” lateral confinement energy hωo of 4 meV
is indicated for all values of b, a typical average “classical” charging energy, Eclassical ( = e2/C), of 3
meV is shown for b < 50 Å, and an electrostatic coupling energy, Eelectrostatic, of 0.7 meV is marked
for b > 65 Å. We stress that quantum mechanical coupling is not the only coupling mechanism in
artificial molecules. In the regime where ∆SAS ≈ hωo (>> Eelectrostatic), quantum mechanical coupling

between the two dots is the dominant mechanism, but in the regime where (hωo >) Eelectrostatic >>

∆SAS, it is electrostatic coupling between the dots which becomes important. Competition
between the two mechanisms as b is varied is expected to have a profound effect on the transport
properties of the two-dot system.

The vertical quantum dot molecules described here are very different from other quantum
dot molecules reported recently. The coupling strength can be tuned in situ in a planar double
quantum dot as demonstrated by Waugh et al. (see also Fig. 2.19), but this type of transistor can
only access the “many”-electron condition where Eclassical > hωo.

15) Single-particle states are
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observed in an ungated vertical TBS by Schmidt et al., but this type of device cannot accumulate
electrons one-by-one at zero bias.16)

2.5.2 Quantum mechanically strongly coupled double dot molecules - vertical configuration
Figure 2.15 shows a grey scale plot of dI/dVsd in the Vsd -Vg plane for a D = 0.56 µm

quantum mechanically “strongly” coupled (b = 25 Å) double dot transistor (outer barriers of TBS
nominally symmetric).14) Black (positive values of dI/dVsd) and white (negative values of dI/dVsd)
lines criss-crossing the plot and running parallel to the sides of the diamonds identify bound and
excited states. Well-formed Coulomb diamonds (grey regions where I = 0 pA) close to zero bias
are evident. The symmetry of the diamonds with respect to bias direction confirms that the states
responsible are delocalized over both dots. Notice that the N = 2 and N = 6 diamonds are
unusually large compared to the adjoining diamonds. As with the single dots, the half-width of the
Nth diamond is a direct measure of the energy needed to add one more electron to the system.
This “addition energy” (change of electro-chemical potential) contains information about the
relevant lateral confinement, direct Coulomb, and exchange energies. The change of electro-
chemical potential as a function of electron number for the “strongly” coupled double dot, and a
D = 0.5 µm single dot is shown in the inset in Fig. 2.15. The familiar “magic” numbers 2, 6, 12, ...
marking the complete filling of shells, and 4, 9, 16, ... marking the half filling of shells (Hund’s
first rule), for the single dot artificial atom are shown for comparison.4) For the ‘strongly’ coupled
double dots, “magic” numbers 2 and 6 are very clear (12 is less so), although 4 is only faintly
present. The 4 meV value for the ‘bare’ hωo in Fig. 2.14 is consistent with the addition energy for
N = 2, and the B-field dependence of the first and second conductance peaks (data not shown).
The 3 meV value of Eclassical in Fig. 2.14 is also in line with the average of the addition energies for
N = 1, 2, and 3 in Fig. 2.15. Note that for N > 15, the addition energy for this double dot is
approximately half that for the single dot. This is reasonable, because the double dot occupies
roughly twice as much volume as the single dot. For this artificial molecule, there is no evidence
from Fig. 4.15 for N < 20 of the presence of anti-symmetric states, i.e. the lowest states are all
symmetric states.

2.5.3 Quantum mechanically weakly coupled double dot molecules - vertical configuration
Figure 2.16 shows a grey scale plot of dI/dVsd in the Vsd -Vg plane for a D = 0.5 µm

quantum mechanically “weakly” coupled (b = 75 Å) double dot transistor showing what appear
to be poorly formed and disrupted Coulomb diamonds close to zero bias from N = 0 to 7.14) The
black and white lines which partially cut across the Coulomb diamonds, i.e. lines not parallel to
the sides of the diamonds, particularly those in the forward bias (the collector barrier of TBS is
slightly thinner than the emitter barrier), are due to resonant tunneling between zero-dimensional
states in the two dots (resonance width ≈ 0.3 meV ≈ ∆SAS(ε = 0 meV)). The contrasting behavior
between the “strongly” coupled dots in Fig. 2 .15 and the “weakly” coupled dots in Fig. 2.16 is
striking. Higher resolution measurements reveal that the disrupted diamonds are actually
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complete Coulomb kites (data not shown), and from the shape of these kites, we can deduce that
the two dots are generally filled alternately by non-resonant processes, i.e. states are usually
localized. The excitation voltage dependence from Vsd = 50 µV to 300 µV of the I - Vg

characteristic for the “weakly” coupled double dot transistor is shown in Fig. 2.17.14) When there
are more electrons in the system, alternate filling of the dots can also be observed. Five
consecutive pairs (each identified by a “•”) of peaks are evident from N = 7 to 17. The pairing
arises from electrostatic coupling between the dots.17) From the related Coulomb kites (not
shown), we can estimate the energy splitting between the peaks belonging to each pair. If ε <<
Eelectrostatic, this energy splitting of about 0.7 meV is a measure of Eelectrostatic (hence the 0.7 meV
value in Fig. 2.14).

2.6 Double Dot Molecules- planar configuration

 Compared with vertically coupled vertical quantum dot molecules, as described in 2.2.2,
laterally coupled planar quantum dot molecules have greater tunability in coupling strength, and
the device configuration is more varied. It follows that two charge states, namely an extra electron
occupying one dot or an extra electron occupying the other dot, can be easily controlled in
laterally coupled devices. This is true not only of the energy of the electrons, but also their charge
states can be superposed. This is called a fully-controllable two-level system, and is used in this
section to study the properties of molecular-like states, i.e. electrostatic coupling and coherent
tunneling coupling. In 2.6.3, a photon-assisted tunneling technique is employed to probe the
energy spectrum. In addition, the effect of the environment around the quantum dots is discussed
in 2.6.4. Real atoms couple to the electromagnetic environment, while quantum dots couple to the
lattice environment.

2.6.1. The Classical Coulomb blockade regime
We start with a molecule formed from two weakly coupled classical dots as the simplest

example. The two charge states are only electrostatically coupled between the two dots. The
device configuration and the equivalent circuit diagram are shown in Figs.2.18 (a) and (b),
respectively. The gate voltage applied to each dot raises the electrostatic potential of the
respective dots, and changes the number of trapped electrons one-by-one. We assume that there
is no mutual influence between the two gate operations. Nonetheless, there is still an interaction
between the dots through the coupling capacitance Ci, i.e. putting one more electron on the first
dot raises the electrostatic potential of the second dot by fraction Ci/C of the charging energy e2

/C. Here, C≈Ct + Cg + Ci is the total capacitance of the first dot. Thus, the electron occupancy in
the two-dot system is a function of the gate voltages applied to the respective dots. Figure 2.18
(c) shows the charging configuration for the electron numbers n and m on the two dots. Each
(n,m) configuration is represented by a hexagon, and hence we see a honeycomb structure in the
charging diagram. Within the hexagons, the electron numbers are fixed at well-defined integers n
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and m and no electron transport occurs. On the boundary lines between two different
configurations, an extra electron flows back and forth between one of the dots and the nearest
reservoir, but it does not go through the other dot, so no actual current flows. A finite current
only flows at the vertex where three different configurations meet. The number of electrons in
each dot can then fluctuate by one, provided that the total electron number, n+m, can fluctuate
only by one due to the influence of the electrostatic coupling between the dots. This leads to
electron tunneling by two types of sequence. One is called an electron-like process in which an
electron sequentially tunnels through the three barriers from the source to the drain. The charge
configuration then changes in the sequence from (n,m) through (n+1,m) to (n,m+1). The other is a
hole-like process occurring in the reverse order, starting with (n+1,m+1), then through (n+1,m) to
(n,m+1), as if a positively charged particle, a hole, has moved toward the positively biased
contact. These electron-like and hole-like processes appear at the vertex labeled P and Q,
respectively in the figure.

The effect of electrostatic coupling was previously studied for superconductor and
semiconductor islands. Especially for the electron turnstile15,18) and the pump operation,19) it was
observed that only one electron tunnels through the device during one period of the alternating
voltage on the gates. For turnstile operation, sinusoidally alternating voltages are applied to two
electrodes with a certain phase difference such that the charge configuration changes from (n,m)
through (n+1,m) to (n,m+1) to (n,m). A single electron flows from the left to the right contact
regardless of the bias voltage polarity. On the other hand, for pump operation, a single electron
flows in the opposite bias direction on the phase of alternating voltage being reversed. This
unique property of carrying one electron per cycle of the ac gate voltage might have an
application as a current standard.

Figure 2.19 shows the current amplitude in the plane of the two gate voltages measured for a
double dot device corresponding to Fig. 2.18(a).20) In the limit of weak coupling, A, where Ci is
negligible to C, the current is seen as an array of spots and the electron-like and hole-like
processes are hardly resolved. If the coupling is increased slightly to the case of B, the two
processes are well resolved and the charge diagram becomes honeycomb-like. As the coupling is
increased from B to D, co-tunneling process becomes distinct on the boundary of the hexagons.
Finally, in the strong coupling limit, from E to F, the two dots merge into a large single dot and a
periodic Coulomb oscillation characteristic of the large dot appears along the Vg1+Vg2 direction.
When the tunneling conductance through the central barrier exceeds the value of e2/h, charge
quantization breaks down, so the electron numbers, n and m, in each dot are no longer well
defined as integers, but the total number, n+m, remains a well-defined integer.20)

Note that we need two independent gates for understanding the full charging diagram of the
double dot system. If one uses only one gate, the current can be measured only along one gate
voltage axis in the charging diagram. The vertices corresponding to the configuration (n,m) will
rarely be cut, and the current modulation will be non-periodic and complicated. As seen in Fig.
2.19, the peak current amplitude depends significantly on the location in the charging diagram, and
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on the source-drain voltage. These dependencies have been explained in terms of a stochastic
Coulomb blockade. However, measurement using a raster sweep over the whole charging diagram
takes a lot of time and complicates understanding of the processes. One can sweep two gate
voltages along the vector from vertex P to vetex Q ( see Fig. 2.18(c) ) to address this problem.15)

2.6.2 Quantum regime
As described in 2.2.1, tunneling current flows when the resonant 0D states in the double dot

are between the Fermi energies of the source and drain. The overall tunneling rate is determined
using the incoming rate from the source Γi , the outgoing rate into the drain Γo, and the tunnel
coupling between the dots Tc. This current is limited by the tunneling rate between the two 0D
states, so that the resonance peak is not accompanied by thermal broadening. The coupling
between the dots and the coupling to the reservoir broadens the quantum state in each dot. The
tunneling current has a line shape given by the density matrix theory, I(ε) = e Tc

2Γo/{Tc
2(2+Γo/Γi)

+ Γi
2/4 + ε}, where ε is the energy difference between the two 0D states.21,22) Note that Γi and Γo

appear in an asymmetric manner, because the incoming tunneling builds up the single electron
states and the outgoing tunneling breaks the states. The Lorentzian line shape has been clearly
observed in Fig. 2.20(c). From the fit to the data for both positive and negative biases, the
parameters, Tc, Γi and Γo can be determined. Note that the width of the current peak is narrower
than the thermal energy. There are small deviations from the Lorenzian shape on one side in Fig.
2.20(c), which will be discussed in the next subsection.

2.6.3 Microwave excitation spectroscopy 
Microwaves have a suitable energy range (4 - 200µeV for 1 - 50 GHz) for exciting an

electron from one state to another in quantum dots. This contributes to the tunneling current, so
that the transition energy between the states can be measured as a function of microwave energy.
This is in the context of photon-assisted tunneling (PAT), which was experimentally studied for
Josephson junctions, and analyzed in terms of time-dependent tunneling theory.23) When the
state ψ0e

iEt/h is placed in an oscillating potential eVeiωt the state takes on the form of a side-band

structure: ΣJn(eV/hω)ψ0exp(i(E+n hω)t/h). Here, Jn(x) is an n-th order Bessel function of the first

kind. These states are equally spaced in energy by hω and have probabilities of Jn
2(eV/hω). The

total probability, ΣJn
2(x), is unity for any x. The photon-assisted tunneling is also described in

chapter 7. We apply the PAT technique to investigate the energy spectrum in a double dot
system.

The microwave field is irradiated via the central gate electrode as schematically shown in Fig.
2.21.24) The double dot is made using the technique of ion implantation and deposition of finely
patterned Schottky gates. This maximizes the discrete 0D energy spacing ∆E. Typical values

of ∆E range from 250 to 500 µeV in this sample. Figure 2.22 shows the effect of microwave
irradiation on the 2D-raster sweep of the two gate voltages.24) The sweep is taken only in the
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vicinity of the vertex M (electron-like process). The current peak at M is due to a 0D-0D
resonance through the double dot when the energy levels, EL and ER, are aligned at the Fermi
energy. For microwaves of 50 GHz, additional positive and negative peaks appear on opposite
sides of the primary peak, growing with microwave intensity. The two peaks are assigned to the
electron excitation from the left-dot to the right-dot, and from the right-dot to the left-dot,
respectively. We define two energy scales for the two dot states: the energy difference ε = EL-ER,
and the average energy E  = (EL+ER)/2. Since the condition for the PAT is that the one level is
located below, and the other level is located above the Fermi energy, the PAT peak has a width
equivalent to the photon energy along the E  direction. This technique can be used to precisely
determine the energy scale on the plane of the gate voltages.

If Vsd is zero or very small compared to the photon energy, as can be seen in Fig. 2.22, the
electron occupies the lower energy state and is excited to the higher energy state by the
microwave irradiation for both the positive and negative PAT peaks. This is the case for photon
absorption. When the bias voltage is increased above the photon energy (i.e. eVsd > hν), an
electron can be injected into the higher energy state at the time when the lower energy state is
empty (see Fig. 2.25). This leads to some inelastic tunneling from the higher state to the lower
state with the spontaneous emission of energy quanta. This will be discussed in 2.6.4. By
neglecting the spontaneous emission, the higher state will be populated while lower state is left
empty (“population inversion” in a two-level system).24) The application of a microwave field
enhances the transition probability from the occupied higher state to the empty lower state,
which is called stimulated emission. If one can integrate an array of double dots in to a cavity
medium, laser operation is expected for the microwave or THz regime.25)

As time-dependent tunneling theory predicts, a non-linear optical regime or multiple
photon-assisted tunneling should occur at an intense microwave amplitude.26,27) Figure 2.23
shows how the higher order PAT processes evolve with microwave amplitude.28) The peak
amplitude plotted against the incident microwave amplitude (left inset) is found to follow the
predicted Bessel function squared dependence well. The peak spacing for the one- and two-
photon peaks from the main resonance are plotted against the frequency in the right inset. The
clear linear dependence on frequency suggests the energy difference can be measured both from
the gate voltage and from the frequency of the PAT spectrum. We note that spectroscopy using
microwave excitation allows us to directly measure the energy spacing, while the gate voltages are
only used to shift the electrostatic potential via the gate capacitance.

For the weakly coupled double quantum dot system just discussed, the effect of coherent
tunnel coupling between the two dots is ignored. If the two spatially separated charge states are
quantum-mechanically strongly coupled, two coherent states, i.e., a symmetric state and an anti-
symmetric state, are formed throughout the two-dot system as described in 2.5. The energy
splitting between these symmetric and anti-symmetric states, ∆SAS (=√(ε2+4Tc

2)), can be
measured using the PAT technique. Figure 2.24 shows the PAT spectrum against gate voltage
(converted into energy difference ε) for different frequencies of 7.5 - 17 GHz.28) The peak traces
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the expected hyperbolic function of the energy difference in ∆SAS very well. The separation

between symmetric and anti-symmetric states, ∆SAS(ε = 0)= 2Tc, is estimated to be 36 µeV in this

case, and can be well controlled from 11 to 60 µeV by changing the central gate voltage or
magnetic field perpendicular to the sample surface.28,29)

   The dynamics of the two levels are of fundamental interest in quantum physics.
Consider the two unperturbed levels, ΕR and ΕL, aligned in energy (ε = 0), and coupled by

amplitude Tc. If one can place an electron ΕR on one level, for instance, at t=0, the probability of
finding an electron in the right dot, PR(t), should oscillate as cos2(Tct/h). The electron goes back
and forth between the two levels with a period of h/2Tc. The gating of the oscillation controls the
quantum state of superposition, which is the basis of a bit reversal operation in quantum logic
gates. There are a number of ways to gate the coherent oscillation. Consider that the two levels
are well separated in energy ε >> Tc, to effectively “freeze” the oscillations into a steady state. If

one can align the two levels ε=0, for a short time τ necessary for gating and then misalign them

again so ε >> Tc, the probability PR(τ) can be controlled by the time period. This technique has
been demonstrated in superconducting small electron boxes by Nakamura et al.30) Another way of
control is via Rabi oscillations. The levels are separated, ε >> Tc, as the steady state, and

microwaves whose photon energy is matched to the energy spacing ε = hν are irradiated for a

short time τ. The oscillating period is h/2TcJ1
2(α), depending on the normalized ac amplitude

α (≈eV/hω).31)

2.6.4 Coupling to the environment
In the previous subsection, we argued that coherent tunneling coupling leads to coherent

oscillations. The oscillations continue forever if the system is completely isolated from the
environment, but some coupling to the environment is necessary for gating the oscillations, and
for measuring the system. We now deal with the coupling of the double dot to the environment,
which in general causes significant decoherence. It has been theoretically argued that how a two-
level system behaves dynamically with coupling to the environment is a spin-Boson problem.32)

Depending on the spectral density function J(ω), which describes the energy-dependence of the
coupling to the environment, the dynamics of a two-level system can show oscillations or
localization. If the coupling is Ohmic, the energy dissipation is linear with energy, J(ω) ~ ω, so
the dynamics behave in the same way as for a classical friction force. This gives localization (the
system does not change), i.e. exponential decay without oscillation, or damped oscillations
depending on the strength of the coupling to the environment. Super Ohmic dissipation, J(ω) ~ ωs

and s>1, leads to damped oscillations, while sub-Ohmic, s < 1, always leads to localization.
Coupling to the environment is a crucial argument for long-lived coherence.

The double quantum dot system has tunable energy selectivity to the environment, since the
system emits and absorbs quanta with energy equal to the energy spacing of the two levels. One
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can measure the energy-dependent coupling to the environment without any external
spectrometer. Figure 2.25(e) shows the current spectrum measured by changing the gate voltages
to sweep the configuration of the two levels from absorption (b), through resonance (c), to
emission (d).33) Vsd is set sufficiently large (Vsd = 140 µeV), so that the left level is occupied by an
electron from the source, and the right level is kept empty as long as the two levels are in the
transport window of |ε| < 140 µeV. When the inelastic tunneling rate Γinel is small compared to the

tunneling rates through the left and the right barriers, Γinel is directly determined from the

measurement of current, I = eΓinel.
In general, emission contains a spontaneous and stimulated contribution, while the

absorption contains only a stimulated contribution. Quantum optics predicts that the emission
rate, We, and absorption rate, Wa, are related to the spontaneous emission spectrum, A(ε) by

Wa(ε) = <n>A(ε) and We(ε) = (<n>+1)A(ε). If one assumes Boson statistics for the environment,
the average occupation number <n> of the environment modes is given by the Bose-Einstein
distribution function, <n>=1/(eε/kT -1). The effect of a non-zero temperature on the current is
shown in Fig. 2.26.33) A higher temperature T enhances the inelastic current on both the emission
(ε > 0) and the absorption (ε < 0) sides. The inelastic current taken at the base temperature of 23

mK (kT  = 2 µeV) is the spontaneous emission contribution, since <n> << 1 for ε > 2 µeV. The
temperature dependencies of the emission rate and the absorption rate are plotted in Fig. 2.26(c).
The experimental data of Wa /A and We /A versus kT/|ε| are well reproduced by the Bose-Einstein
distribution function for <n>. This suggests that the inelastic tunneling observed in this
experiment is caused by the coupling of the electronic systems to the Bosonic environment.

In semiconductor systems, acoustic phonons are the most likely Bosons to couple to a
double dot. For a deformation-type coupling, the spontaneous emission rate is proportional ε for

3D phonons, and constant with ε for 2D phonons. On the other hand, for a piezoelectric-type

coupling, the energy-dependence is given by 1/ε for 3D phonons, and 1/ε2 for 2D phonons. The

experimental spectrum of A(ε) shows the energy dependence between 1/ε and 1/ε2, suggesting a
piezoelectric interaction for 2D or 3D phonons. The wavelength of the phonon related to the
energy resonance is comparable to the typical length scale of the sample geometry as defined by
the Schottky gate metal. Step-like features indicated by the arrows in Fig. 2.25 could be due to
these phonon resonances, and the phonon wavelength matches the system size, 380 nm in this
case.33)

2.6 Summary

In this chapter, the electronic properties of artificial semiconductor quantum dot atoms and
molecules have been described. Atom-like properties of few-electron ground states such as shell
filling and obeyance of Hund’s first rule are all observed in a 2D circular dot or artificial atom. In
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the presence of a magnetic field, the atom-like ground states show a variety of transitions to
maximize the total spin and the total angular momentum. The electronic phases between certain
transitions are well defined in the plane of the magnetic field and the number of electrons (“B-N
phase diagram”). The atom-like properties described are intimately linked to the symmetry of the
dot geometry. In other words, breaking the symmetry can produce new electronic states. In situ
control of the dot geometry is desirable for this, and as one of the candidates, a single electron
transistor with multiple gates, is presented. For quantum dot molecules, the electronic properties of
quantum mechanically strongly and weakly coupled two-dot systems are described. For vertically
coupled double dot molecules, electron filling can be distinguished between these two different
regimes: consecutive filling of delocalized symmetric states, reflecting quantum mechanical
coherent coupling, is observed for the former, while alternate filling of two localized states, arising
from the electrostatic coupling, is identified for the latter. On the other hand, laterally coupled
double dot molecules are more useful for the in situ control of the coupling parameters. A
microwave technique is a powerful tool for probing the energy spectrum of the coupled states, and
can be employed to distinguish whether the states are delocalized or localized. The microwave
photons provide the energy balance for transitions between the two coupled states. In the absence
of microwaves, energy conservation is attained by coupling to the environment, i.e. phonon
system in our case. This is well demonstrated from measurement of the temperature-dependence of
inelastic tunneling between two localized states.
 Quantum dot structures are ideally suited as probes to investigate interesting physics that have not
yet been fully established, such as many-particle interactions, coherent or incoherent tunneling and
coupling to other energy quanta, and also as a system in which quantum mechanics can be easily
tested in the laboratory. Only a few examples are described in this chapter. Many more
fundamental studies as well as applications for electrical and optical devices are underway and will
be exploited in the future.
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Figure Captions:

Fig.2.1. (a) Schematic representation of a quantum dot connected to source and drain contacts by
tunnel junctions and capacitively coupled to a gate. (b) Energy diagram of a quantum dot when
electron transport is blocked by the level spacing (∆ E ) and classical charging energy (e2/C).

Fig.2.2. Schematic representation of a quantum dot in a vertical device and scanning electron
microscope images of the top contact and the gate metal for a circular and rectangular mesa.3,4) The
bottom (substrate) contact is not visible.

Fig.2.3. Coulomb oscillations in the current versus gate voltage at B = 0 T measured at T = 50
mK.4)

Fig.2.4. Change of electro-chemical potential, µ (N+1) - µ (N+1), as a function of electron
number N .4) Electron distributions for 1s, 2p, 3d, 3s orbitals are also shown.

Fig.2.5. (a) Fock-Darwin (FD) diagram calculated for hω0 = 3 meV.4) (b) B-field dependence of
current peak positions for the same device whose Coulomb oscillations are shown in Fig. 2.3.4)

(c) Modification of peak pairing in the second shell close to B = 0 T is schematically shown. The
related F-D states are indicated by (n,ℓ) and↑or↓, where↑or↓ is a state with an up-spin or a
down spin, respectively.4)

Fig.2.6. (a) Evolution of current peaks for N = 0 to 5 with B-field. Ground state transitions are
indicated by different symbols. The arrows in the boxes indicate the spin configurations. The
lowest box corresponds to the FD state (n,ℓ) = (0, 0). For boxes to the right,ℓincreases by 1
with n = 0. For N = 4 and 5, near B= 0 T, also theℓ= -1 box is shown on the left of theℓ= 0
box.7)  (b) Exact calculation of electro-chemical potential for the N = 1 to 4 ground states.8)

Fig.2.7. Surface plot of current amplitude for N = 0 to 2 measured with Vsd = 5 mV. Changes in
the color near the dashed line indicate changes in the current amplitude. Black is the Coulomb
blockade region where I = 0 A. The states in the N = 1 stripe (lower stripe) are identified by the
quantum numbers (n,ℓ).7)

Fig.2.8. Surface plot for the N = 4 current stripe measured with Vsd = 1.6 meV. The white and
black dashed lines show the N = 4 GS, and first ES, respectively, from which transitions in the
GS can be identified.7)

Fig.2.9. B-N phase diagram of electronic states in the 2D disk-shaped quantum dot.

Fig.2.10. Schematic view and configuration of a square mesa with four separate gates. Drain
current I flows vertically through the quantum dot in the mesa at the center of the “cross”.13)
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Fig.2.11. “Map” of conductance peak positions in VgA (= VgB) -VgC (= VgD) space. Vg1 and Vg2 are
orthogonal voltage vectors. Voltage-vector scan along x, y, and z are shown in Fig.2.13.13)

Fig.2.12. “Map” of conductance peaks in Vg1 -Vg2 space. Pairs of conductance peaks are identified
by “#”. Large gaps between peaks in these traces are marked by “•”.13)

Fig.2.13. B-field dependence up to 0.9 T of the conductance peaks along the three Vg1 voltage-
vectors x, y, and z. The “reference peak” is actually the same peak for each voltage-vector.13)

Fig.2.14. A simple calculation of ∆SAS as a function of central barrier thickness, b. Inset shows a
schematic section through the vertical double dot structure.14)

Fig.2.15. Grey scale plot of dI /dVsd in the Vsd -Vg plane for a quantum - mechanically “strongly”
coupled double dot transistor. Inset: Change in electro-chemical potential as a function of electron
number for the same “strongly” coupled double dot, and a D = 0.5 µm single dot. 14)

Fig.2.16. Grey scale plot of dI /dVsd in the Vsd -Vg plane for a quantum - mechanically “weakly”
coupled double dot transistor.14)

Fig.2.17. Excitation voltage dependence from Vsd = 50 µV to 300 µV of the I  -Vg characteristic for
the quantum - mechanically “weakly” coupled double dot transistor.14)

Fig.2.18. (a) Schematic diagram of two quantum dots, L and R, coupled in series between the
source S, and the drain D, contacts. (b) Equivalent circuit of the double dot system. (c) Charging
diagram of the double dot system: (n, m) denotes the stable charge configuration with n electrons
in the left dot and m electrons in the right dot. Electrons can pass through the double dot only at
the triple points where three phases meet. Electrons tunnel sequentially in the normal order at the
vertex P, and in reversed order at Q.

Fig.2.19. Logarithmic plot of conductance in a double dot structure as a function of gate voltages,
Vg1 and Vg2, whose zero is arbitrarily set. Yellow indicates high conductance; dark regions
represent low conductance. Interdot conductances are (A) Gint = 0.22 G0, (B) Gint = 0.40 G0, (C)
Gint = 0.65 G0, (D) Gint = 0.78 G0, (E) Gint = 0.96 G0, and (F) Gint = 0.98 G0 (where G0= 2e2/h);
(F) is at the threshold of a larger value of conductance to accommodate a higher background
conductance.20)

Fig.2.20. (a) Scanning electron microscope images of the double dot structure with lithographic
dimensions of 320 x 320 nm2 (left dot) and 280 x 280 nm2 (right dot). (b) Schematic potential
landscape of the double quantum dot, where µleft and µright denote the electro-chemical potential of
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the left and right reservoirs, and Vsd is the bias voltage across the double dot structure. The 0D
states in dot I are denoted by levels 1 to 5, and in dot II by levels α and β. (c) The resonance of

the two discrete levels measured with a bias voltage of 400 µV. The data points (black dots) can
be fitted with a Lorentzian line shape (solid line). For comparison, we have plotted a thermally
broadened resonance with a fit temperature T = 35 mK (dashed line).21)

Fig.2.21. (a) Double quantum dot device defined in the two dimensional (2D) electron gas of a
GaAs/AlGaAs heterostructure by focused ion beam implantation. The narrow channel connects
the large 2D source and drain leads. Negative voltages (VgL, VgC, and VgR) applied to the metal
gates (For GL, GC, and GR; widths are 40 nm) induce three tunable tunnel barriers in the wire. The
two quantum dots, L and R, respectively, contain about 15 and 25 electrons; charging energies are
about 4 and 1 meV; and the measured average spacings between single-particle states are about 0.5
and 0.25 meV. (c) Scanning electron microscope images of the double dot structure.

Fig.2.22. Gray scale plot with contour lines of the current flowing through the double quantum
dot structure measured with a small bias voltage of 50 µV. The three thin lines are boundaries of
charge states (n, m), (n-1, m), and (n, m-1). The main resonance peak is observed at the triple
point (M) of the three charge states. The arrows indicate two energy directions along which the
average energy, E  = (ER + EL)/2, and the energy difference, ε = ER - EL, can be changed. PA and
PB is the conditions for PAT processes; PA for the excitation from the left to the right dot, and PB

for the excitation from the right to the left dot.24)

Fig.2.23. Current versus gate voltage of a weakly coupled double dot structure. The dashed curve
is for the case when no microwaves are applied and contains only the main resonance. The solid
curves are taken at 8 GHz for increasing microwave powers resulting in an increasing number of
satellite peaks. On the right side of the main peak, these correspond to photon absorption. The
source-drain voltage is Vsd = 700 µeV and the photon energy is hf = 32 µeV at 8 GHz. At the
highest power, we observe 11 satellite peaks, demonstrating multiple photon absorption. Left
inset, height of the first four satellite peaks as a function of the microwave amplitude. The
observed height dependence agrees with the expected Bessel-function behavior. Right inset,
distance between main resonance and first two satellites as a function of the applied frequency
from 1 to 50 GHz. The distance is converted to energy through δE = κ∆Vg, where κ is the
appropriate capacitance ratio for our device that converts gate voltage Vg to energy. The
agreement between the data points and the two solid lines, which have slopes of h and 2h,
demonstrates that we observe the expected linear frequency dependence of the one- and two-
photon processes.28)
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Fig.2.24. (a) Measured photon assisted tunneling current through a coherently coupled double
quantum dot device. Gate voltages on GL and GR are swept simultaneously to give an energy
difference, ε = ER - EL, between the two levels. The different traces are taken at different
microwave frequencies and offset such that the vertical axis gives the frequency. Typical peak
current is 0.5 pA. The dashed lines show a linear dependence, ε = hf, expected for no coherent

coupling, while the solid curve is a hyperbolic dependence with a covalent energy of 36 µeV. The
left and right insets show schematic energy diagrams to show different current directions. At
positive ε, the bonding and anti-bonding states are weighted respectively on the left dot and the

right dot, and vice versa at negative ε. (b) The microwave frequency, f, dependence of the

resonance condition, ε, taken from half the energy spacing between the positive and the negative
peaks. Different symbols represent different gate voltage and magnetic field conditions. Solid lines
show the hyperbolic dependence fitting to the data.28)

Fig.2.25. (a) Schematic illustration of the double quantum dot device. (b-d) Diagrams showing
energy (vertical axis) along the horizontal spatial axis through the dots for the situations:
absorption, elastic tunneling and emission. Thick vertical lines denote tunnel barriers. The
continuous-electron states in the leads are filled up to the Fermi energies, µs and µd. The external

voltage, Vsd, between the leads opens a transport window of size eVsd = µs - µd. An elastic current

can flow when ε =0, otherwise a non-zero current requires absorption (ε < 0) or emission of

energy (ε > 0). (e) Typical measurement of the current (solid) versus ε at 23 mK. The measured
current is decomposed into an elastic part (dashed) and an inelastic (dotted-dashed) part.33)

Fig.2.26 (a) Measured current versus ε for T = 23 to 300 mK. The current is measured for eVsd =
140 meV while sweeping VGR and VGL simultaneously in opposite directions such that we only
change the energy difference ε. Gate voltage is translated to energy ε by a calibration that is better
than 10% using photon-assisted tunneling measurements. Dashed lines indicate exponential
dependence, eε/kT, for |ε| >> kT. Arrows point to step-like structures on the emission side (ε >0),

and a shoulder on the absorption side (ε < 0). From fits to the elastic current part at 23 mK, we

obtain hΓR ~ hTc ~ 1 meV and hΓL ~ 5 meV for this data set. (b) Reconstructed current, Itot (ε) = Iel

(23mK) + Iinel (ε,T) for different T. The spontaneous emission spectrum derived from the
measured data at 23 mK and the Einstein's relation are used to reconstruct the full temperature
and energy dependence. (c) The absorption rate Wa (open symbols), and emission rate We (closed
symbols) normalized by the spontaneous emission rate A versus kT/|ε|. Circles, squares, upper-

and lower-triangles, and diamonds are taken at |ε| = 18, 24, 40, 60, and 80 meV, respectively (see
also symbols in (a)). The solid line indicates the Bose-Einstein distribution, <n>, while the dashed
line shows <n+1>.33)
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