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Abstract

We observe an alternation of high and low valley conductance regions as a function of magnetic &eld for constant electron
number in a Kondo quantum dot. The valley conductance also alternates between high and low as a function of electron
number at constant magnetic &eld. Full 3D spin density functional calculations of our device quantitatively explain this
behaviour in terms of a spatial redistribution of the electron spins in the dot. The spin density functional calculations provide
a connection between the many-body state of the Kondo e2ect on the one hand, and the detailed electronic structure of our
nanoscale device on the other hand.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Kondo e2ect [1] was originally observed in
metals that contain a small concentration of magnetic
impurities. The phenomenon occurs because below a
certain temperature, which is called the Kondo tem-
perature, TK, the mobile electrons in the host metal
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tend to screen the non-zero total spin of the electrons in
the magnetic impurity atom. A &nite net total electron
spin con&ned in a quantum dot [2] connected to source
and drain leads, can nicely mimic the situation of a
localized spin impurity surrounded by a Fermi sea.
This analogy led to the prediction that the Kondo e2ect
should occur in quantum dot systems as well [3,4].
The Kondo e2ect in quantum dots gives rise to

an enhanced conductivity in the Coulomb block-
ade regime (as opposed to an enhanced resistivity
in the case of a metal containing magnetic impuri-
ties) and occurs for temperatures and source–drain
voltages below an energy scale set by TK. The &rst
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experimental results on the Kondo e2ect in quantum
dots [5–7] were described with help of the spin- 12
Anderson impurity model. If spin-degenerate single-
particle levels are consecutively &lled, the dot has
either total electron spin S = 0 (for electron num-
ber N even) or S = 1

2 (for N odd). In that case, the
Kondo e2ect is only expected for odd N , giving rise
to an “odd–even-e2ect” in the Coulomb valley con-
ductance. However, many experiments have shown
results that deviate from the scenario sketched above
[8–18].
Here, we are particularly interested in the so-called

“chessboard pattern” in the dot conductance as a
function of magnetic &eld, B, and gate voltage, Vg

[12,13,15–18]. This pattern is characterized by the
alternation of high and low valley conductance re-
gions as a function of B within the same Coulomb
valley, i.e. for constant N . The conductance also
alternates when N is changed by sweeping Vg at con-
stant B. When the conductance is plotted in greyscale
(see Fig. 1c), some similarity with the &elds of a
chessboard can be found, giving rise to the name of
this phenomenon. Experiments have shown that the
enhanced conductance in certain Coulomb blockade
regions can be ascribed to the Kondo e2ect, for both
N odd and even [12,13,15–18].
In this paper, we present full 3D spin density

functional (SDF) calculations for our quantum dot
structure. The analysis of the total electron angular
momentum and the spatial spin distribution gives a
good insight in the behaviour of our device in the
low-magnetic-&eld regime. In addition, we introduce
an e2ective Kondo coupling, derived entirely from
the self-consistent results. Hence we can simultane-
ously calculate the electronic states of the dot and
an estimate of the Kondo coupling exhibiting the
chessboard structure. Our calculations clearly show
that the underlying mechanism of the chessboard
pattern is formed by the redistribution of electron
spins between the two lowest (spin-degenerate) Lan-
dau levels (LLs) in the dot. An interesting &nding is
that higher LLs only start to &ll below a few tenths
of a Tesla, due to the small electron number and
shallow potential in the dot. Recent experimental
and theoretical work [19] has also focused on elec-
tron spin redistribution in quantum dots particularly
in the &lling-factor-two-regime, however, without
addressing the Kondo e2ect.

2. Experiment

Our quantum dot device is shown in Fig. 1a [20]. By
depleting the 2D electron gas below the metal gates,
a single quantum dot is de&ned. The electron number
is varied by sweeping the right gate voltage, Vg3. The
self-consistently calculated potential landscape in the
relevant area is shown in Fig. 1b. The SDF calcula-
tions show that our dot typically contains ∼ 20–40
electrons.

Fig. 1. (a) Scanning electron micrograph of the device, used to
create a single quantum dot. The relevant region is indicated
by a dashed box and the used gate electrodes (light grey) are
indicated. Ungated 2DEG mobility is 2:3 × 106 cm2=(V s) and
electron density is 1:9× 1015 m−2 at 4:2 K. Nominal dot size is
320× 320 nm2. (b) Calculated self-consistent potential landscape
of the single dot. Lowest contour corresponds to −6 meV, spacing
of contours is 9 meV. (c) Greyscale plot of the experimental
linear conductance G through dot as function of B and Vg3 at
10 mK. White arrows indicate some regions where Coulomb peak
suppression occurs. Inset, calculated chessboard pattern using the
Kondo parameter K (see text).
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Fig. 1c shows a greyscale plot of the linear conduc-
tance G through the dot as a function of B and Vg3. For
the most negative values of Vg3 the dot-lead coupling
is weak. As a result relatively sharp Coulomb peaks
and low valley conductance are observed. For more
positive Vg3 values, the valley conductance reaches
∼ e2=h in certain regions of the (B; Vg3) plane. The
regions of low and high valley conductance alternate
both along the Vg3 and the B-axis in a regular way,
resulting in a chessboard pattern as mentioned above.
The Vg3 period (∼ 10 mV) is set by the energy re-
quired for adding an extra electron to the dot (addition
energy), whereas the B period (∼ 0:1 T) corresponds
to adding a Oux quantum to the e2ective dot area.
Based on the temperature dependence of G in the high
valley conductance regions (not shown), the enhanced
G is ascribed to the Kondo e2ect. The transition from
high to low valley conductance is associated with a
sudden jump of the Vg3 position of the Coulomb peaks.
In some cases (see white arrows in Fig. 1c) the jump
is accompanied by a suppression of the peak height
[18]. We present below a quantitative explanation for
some of the main features of our experimental results
based on full 3D spin density functional calculations.

3. Spin density functional calculations

We self-consistently compute eigenvalues p�,
eigenfunctions  p�, occupancies np�, and tunneling
coePcients �p�, with p the orbital and � the spin in-
dices, as well as the total interacting energy F of the
dot–gate–leads system, all as a function of N , Vg3 and
B [18,21]. Fig. 2 shows a graph of the expectation
value of the total electron orbital angular momentum,
LT, for both spin species versus B for N=32,33. Only
the &rst two LLs in the dot are occupied. The low-
est LL (LL1) is most strongly coupled to the leads,
whereas the higher LL (LL2) is more con&ned in the
dot centre and hence much less e2ectively coupled to
the leads [13,18,22]. Therefore, instead of the total
net spin in the dot, it is much more the net spin in
the lowest (i.e. outer LL) that matters for the Kondo
physics [18].
When B increases, spin-down and spin-up electrons

successively move from the inner to the outer LL,
thereby increasing their angular momentum. At (a)
(see Fig. 2) the number of electrons in the inner LL,

Fig. 2. Calculated total electron orbital angular momentum, LT, as
a function of B for both spin-up (LT↑) and spin-down (LT↓) in the
cases of 32 (Vg1 =−410 mV, Vg2 =−392 mV, Vg3 =−449 mV)
and 33 (Vg3 changed to −440 mV) electrons. Spin-down is as-
sumed to have lower Zeeman energy. The two dashed lines mark
B=0.95 and 1:04 T. The positions along the dashed lines indi-
cated by a–d correspond to the net spin distributions given in
Fig. 3a–d, respectively, and are explained in the text. Schematic
occupancy con&gurations (energy vs. position) of the uppermost
levels in both LLs (LL1: right; LL2: left) at the dot boundary are
given at positions a–d.

N2, is even, and necessarily the number of electrons
in the outer LL, N1, is odd. As spin-down is assumed
to have the lowest Zeeman energy, the unpaired elec-
tron in LL1 has spin-down, leading to the larger LT

for spin-down (LT↓) at (a). The di2erence LT↓ − LT↑
is relatively large, because the unpaired electron is oc-
cupying the LL with the highest orbital angular mo-
mentum. At (b) there is an unpaired spin-down elec-
tron in LL2, leading to a smaller value of LT↓ − LT↑.
For N=32 at (c), there is no excess spin in either
of the LLs, resulting in LT↓ ≈ LT↑. When B is in-
creased to position (d) not only LT↓ increases, but also
LT↑ decreases. The reason is that the transition of a
spin-down electron from LL2 to LL1 is accompanied
by a spin Oip of the unpaired spin-up electron in LL2,
favoured by the lower Zeeman energy and, to a lesser
extent, by the gain in exchange energy. The expecta-
tion value of the net spin per area, S(x; y), de&ned as

S(x; y) =
∞∑

p=1

(np↓| p↓|2 − np↑| p↑|2); (1)
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Fig. 3. Calculated greyscale-contour plot of the net spin per area,
S(x; y). The scale ranges from −6 (light grey) to 21 milliparticles
per 100 nm2 (black). Magnetic &eld values are in tesla. Plots
a–d correspond to the positions indicated in Fig. 2. Note that the
plots are not symmetric due to the asymmetric dot shape and
asymmetrically applied gate voltages (see caption Fig. 2).

corresponding to situations (a)–(d) of Fig. 2, is given
in Fig. 3. Fig. 3a clearly shows that the net spin (down)
density is concentrated along the periphery of the dot,
especially in the regions closest to the leads. In Fig.
3b, however, the net spin density close to the leads
is signi&cantly lower than in the region closer to the
centre. Although N = 33 (i.e. odd) in both cases,
the electron spin redistribution e2ectively suppresses
the Kondo e2ect in the second case, as we will quan-
tify below in some more detail. In situation (c) we
do not expect any &nite net spin anywhere in the dot,
which is reOected in Fig. 3c (note that S(x; y) is mag-
ni&ed 104 times). On the other hand, in Fig: 3d, there
is again a strong concentration of spin at the edges of
the dot, turning on the Kondo e2ect.
In order to quantitatively show that the spin re-

distribution indeed gives rise to the experimentally
observed chessboard pattern, we introduce as a
measure of the Kondo conductance the sum K of
all co-tunneling amplitudes that leave the ground
state unchanged except for the Oip of a single spin
K ≡ ∑

p;� np;�(1− np; R�)
√
�p;��p; R�(1=EN

C − 1=EN−1
C )

where EN
C ≡ F(N + 1; Vg3; B) − F(N; Vg3; B) and

R� is the spin opposite to � [18]. K calculated for
a small (B; Vg3) region is shown in the inset to

Fig. 1c, indeed revealing the expected valley conduc-
tance alternation.

4. Summary

Using full 3D spin density functional calculations
we have been able to quantitatively explain the un-
derlying mechanism of the chessboard pattern in the
conductance of a Kondo quantum dot—as experimen-
tally observed by us and many other groups—in terms
of magnetically induced spin redistribution.
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