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Controlling Spin Qubits in Quantum Dots
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We review progress on the spintronics proposal for quantum computing where
the quantum bits (qubits) are implemented with electron spins. We calculate the
exchange interaction of coupled quantum dots and present experiments, where
the exchange coupling is measured via transport. Then, experiments on single
spins on dots are described, where long spin relaxation times, on the order of a
millisecond, are observed. We consider spin-orbit interaction as sources of spin de-
coherence and find theoretically that also long decoherence times are expected.
Further, we describe the concept of spin filtering using quantum dots and show
data of successful experiments. We also show an implementation of a read out
scheme for spin qubits and define how qubits can be measured with high preci-
sion. Then, we propose new experiments, where the spin decoherence time and the
Rabi oscillations of single electrons can be measured via charge transport through
quantum dots. Finally, all these achievements have promising applications both in
conventional and quantum information processing.
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1. INTRODUCTION

The spin degree of freedom promises many applications in electronics.(1–3)

Prominent experiments have shown injection of spin-polarized currents
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into semiconductor material,(4,5) long spin dephasing times in semicon-
ductors (approaching microseconds),(6) ultrafast coherent spin manipula-
tion,(7) as well as phase-coherent spin transport over distances of up to
100µm.(6) Irrespective of spin, the charge of the electrons can be used
to control single electrons by confining them in quantum dot structures,
which leads to striking effects in the Coulomb blockade regime.(8) The
Loss and DiVincenzo proposal(9) combines these two fields of research
and uses the spin of electrons confined on quantum dots as spin qubits for
quantum computation. This proposal comprises two-qubit quantum gates
relying on the exchange interaction of coupled quantum dots and com-
prises spin-to-charge conversion for efficient read-out schemes, satisfying
all theoretical requirements for quantum computing. This quantum com-
puter proposal, based on exchange interaction, can be mapped from elec-
tron spins on dots to nuclear spins of P atoms in Si, as shown by Kane(10)

(see article in this issue).
The spin qubit proposal(9) addresses the central issues for building

a quantum computer. However, for a concrete implementation of spin
qubits, a more detailed theoretical and experimental understanding of
spins on quantum dots is required. This demand has led to many new
theoretical and experimental investigations on quantum dots, which also
address interesting aspects of physics on their own. In this article we will
review some of these recent results.

1.1. Quantum Dots

In this article we consider semiconductor quantum dots. These are
structures where charge carriers are confined in all three spatial dimen-
sions. The dot size, typically between 10 nm and 1 µm,(8) is on the order of
the Fermi wavelength in the host material. The confinement of the quan-
tum dots is usually achieved by electrical gating of a two-dimensional elec-
tron gas (2DEG), possibly combined with etching techniques, see Figs. 1,
2(a), and 5(b). Small dots have charging energies in the meV range, result-
ing in quantization of charge on the dot (Coulomb blockade). This allows
precise control of the number of electrons and of the spin ground state
on the dot. Such a control of the number of electrons in the conduction
band of a quantum dot (starting from zero) has been achieved with GaAs
heterostructures, e.g., for vertical dots(11) and lateral dots.(12,13) Quan-
tum dots have various tunable parameters. These include geometry, energy
spectrum, coupling between dots, etc. which open up many possibilities by
providing a versatile system for manipulation of electronic states, in par-
ticular the spin state. Further, the electronic dot-orbitals are highly sensi-
tive to external magnetic and electric fields,(8,11) since the magnetic length
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Fig. 1. An array of quantum dots (circles) is defined by gate electrodes (dark gray) which
confine the electrons. For spin manipulations, electrons can be moved by changing the gate
voltage, pushing the electron wave function into the magnetized or high-g layer, allowing for
spatially varying Zeeman splittings. Alternatively, local magnetic fields can be achieved by a
current-carrying wire (indicated on the left of the dot array). Then, the electron in each dot
is subject to a distinct Zeeman splitting. This can be used for one-qubit gates, since only
relative spin rotations are sufficient. Further, the spins can be addressed individually with
ESR pulses of an oscillating in-plane magnetic field which is in resonance with a particu-
lar Zeeman splitting. These mechanisms allow single-spin rotations in different spatial direc-
tions. For gate operations on two qubit spins, their exchange coupling can be controlled by
lowering the tunnel barrier between the dots (see Sec. 2). Here, the two rightmost dots are
drawn schematically as tunnel-coupled. Note that only electrical switching is required to con-
trol spin dynamics and quantum computation with such a device.

corresponding to fields of B ≈ 1 T is comparable to typical dot sizes. In
coupled quantum dots, Coulomb blockade effects,(14) tunneling between
neighboring dots,(8,14,15) and magnetization(16) have been observed as well
as the formation of a delocalized single-particle state(17,18) and coherent
charge oscillations.(19)

1.2. Quantum Computing with Spin Qubits

The interest in quantum computing(20,21) derives from the hope to
outperform classical computers using new quantum algorithms. These
algorithms make use of the quantum computer’s abilities to exist in a
quantum superpositions of its “binary” basis states |0 · · ·00〉, |0 · · ·01〉,
|0 · · ·10〉,..., and to perform unitary time evolutions U |�in〉 = |�out〉 for
computation. The basis states can be realized by concatenating several
quantum bits (qubits) which are states in the Hilbert space spanned by
|0〉 and |1〉. A natural candidate for the qubit is the electron spin because
every spin 1/2 encodes exactly one qubit. Such spin qubits on quantum
dots are good candidates for realizing a quantum computer.(9) We consider
the five criteria of DiVincenzo’s checklist(22) which must all be satisfied for
any physical implementation of a quantum computer. We briefly discuss
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Fig. 2. (a) Double dot structure with a single electron in each dot, shown as scanning
electron micrograph of the metallic surface gates.(12) The circles indicate the two quantum
dots and the arrows show the possible current paths. A bias voltage, VDOT , can be applied
between source 2 and drain 1, leading to current through the dots. A bias voltage, VSDi

between source and drain i =1,2 yields a current, IQPC, through the corresponding QPC. (b)
Charge stability diagram (honeycomb)(15) of the double quantum dot, measured with QPC-
R.(12) A modulation (0.3 mV at 17.77 Hz) is applied to gate L, and dIQPC/dVL is measured
with a lock-in amplifier and plotted versus VL and VPR. The bias voltages are VSD2 =100µV
and VDOT =VSD1 =0. The inset shows a magnification of the honeycomb pattern for the first
few electrons in the double dot. The labels “nLnR” indicate the number of electrons in the
left and right dot, and the double dot is completely empty in the region “00.”

that these criteria are satisfied for spins qubits.(9,23) These criteria provides
us with a good starting point for going into the details of concrete parts
of the actual implementation of spin qubits. In the following sections we
then show where specific theories and current experiments give new insight
into the realization of spin qubits.

(i) A scalable system with well characterized qubits is required. To
speed up calculations using a quantum computer, one needs a large num-
ber of qubits, i.e., on the order of 105. This requirement is achievable for
spin qubits, since producing arrays of quantum dots is feasible with state-
of-the-art techniques for defining nanostructures in semiconductors. Fur-
ther, the electron’s spin 1/2 provides a natural qubit, setting |0〉≡ |↑〉 and
|1〉≡ |↓〉.

(ii) The state of the qubits must be initialized to a known value at the
beginning of a computation. To initialize spin qubits, one can apply a
large magnetic field gµBB � kT that allows them to relax to the thermal
ground state. Alternatively, one can inject polarized electrons into the dot
by using spin-polarizing materials(4,5) or by using a spin filter(24) which we
describe in Sec. 4.

(iii) Long decoherence times, much longer than the gate operation time,
is the most difficult criterion to satisfy for many quantum computer
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proposals. Here, the current knowledge about the spin qubits is very
promising. Gate operation times well below one ns are in principle fea-
sible.(23) Using theoretical estimates and experimental data on spin flip
times, the expected decoherence times can reach ms (see Sec. 3). Thus, the
decoherence times could be eight orders of magnitude larger than the gate
operation times.

(iv) With a universal set of quantum gates, any quantum algorithm can
be implemented by controlling a particular unitary evolution of the qubits.
It is sufficient to have single-qubit gates and a universal two-qubit gate
(e.g., xor or square root of swap). Single qubit gates can be produced
by controlling the local magnetic field, the local g factor (or g tensor),
or local Overhauser field, which, e.g., can be achieved with a semiconduc-
tor heterostructure and electrical gating,(23,25,26) (see Fig. 1). To build two-
qubit gates, one can use the exchange interaction which arises when two
neighboring dots are tunnel coupled, which can again be controlled via
gate voltages.(9,27) We describe the exchange interaction of coupled dots in
Sec. 2.

(v) Qubit read out determines the result at the end of the computation
by measuring specific qubits. There are several proposals for measuring the
spin in quantum dots, most of them rely on transferring the information
from the spin to the charge state,(9) e.g., by making use of the Pauli prin-
ciple,(24,28,29) via the spin-orbit interaction,(30) or by making use of the
Zeeman splitting.(29) We discuss concrete read-out schemes for spin qubits
in Sec. 5 and address experiments(31) where single-shot read out has been
achieved.

2. TWO COUPLED QUANTUM DOTS AS QUANTUM GATES

We now consider a pair of spin qubits which are coupled by the
exchange interaction, which results from the combination of the Coulomb
interaction and the Pauli exclusion principle. Two electrons in coupled
quantum dots and in the absence of a magnetic field have a spin-singlet
ground state, while the first excited state in the presence of sufficiently
strong Coulomb repulsion is a spin triplet. Higher excited states are sep-
arated from these two lowest states by an energy gap, given either by
the Coulomb repulsion or the single-particle confinement. The low-energy
dynamics of such a system is described by the effective Heisenberg spin
Hamiltonian,

Hs(t)=J (t)S1 ·S2, (1)
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where J (t) describes the exchange coupling between the two spins S1 and
S2 and is given by the energy difference between the triplet and the sin-
glet, J =ET0 −ES. After a pulse of J (t) with

∫ τs

0 dtJ (t)/�=π (mod 2π ),
the time evolution U(t) = T exp(i

∫ t

0 Hs(τ )dτ/�) corresponds to the swap
operator Usw, whose application leads to an interchange of the two spin
states. While Usw is not sufficient for quantum computation, any of its
square roots, say U

1/2
sw |φχ〉= (|φχ〉+ i|χφ〉)/(1+ i), turns out to be a uni-

versal quantum gate. It can be used, together with single-qubit rotations,
to assemble any quantum algorithm.(9)

We consider a system of two coupled quantum dots in a 2DEG, con-
taining one (excess) electron each (see Fig. 2(a)). The dots are arranged
in a plane such that the electrons can tunnel between the dots, lead-
ing to an exchange interaction J between the two spins, which we now
calculate. We model this system of coupled dots with the Hamiltonian
H =∑

i=1,2 hi +C +HZ =Horb +HZ. The single-electron dynamics in the
2DEG (xy-plane) is defined with the Hamiltonian hi , containing the quar-
tic confinement potential

V (x, y)= mω2
0

2

[
1

4a2

(
x2 −a2

)2 +y2
]

(2)

with inter-dot distance 2a, effective Bohr radius aB =√
�/mω0, and effec-

tive mass m. Separated dots (a � aB) are thus modeled as two harmonic
wells with frequency ω0, consistent with experiments where the low-energy
spectrum of single dots indicates a parabolic confinement.(11) A magnetic
field B = (0,0,B) is applied along the z-axis, which couples to the elec-
tron spins through the Zeeman interaction HZ and to the charges through
the vector potential A(r)= (B/2)(−y, x,0). In almost depleted regions, like
few-electron quantum dots, the screening length λ can be expected to be
much larger than the screening length in bulk 2DEG regions (where it is
40 nm for GaAs). Thus, for small quantum dots, say λ � 2a ≈ 40 nm, we
consider the bare Coulomb interaction C = e2/κ|r1 − r2|, where κ is the
static dielectric constant.

Now we consider only the two lowest orbital eigenstates of Horb, leav-
ing us with one symmetric (spin singlet) and one antisymmetric (spin trip-
let) orbital state. The spin state for the singlet is |S〉= ( |↑↓〉 − |↓↑〉)/√2,
while the triplet spin states are |T0〉= ( |↑↓〉 + |↓↑〉)/√2, |T+〉= |↑↑〉, and
|T−〉 = |↓↓〉. For kT � �ω0, higher-lying states are frozen out and Horb
can be replaced by the effective Heisenberg spin Hamiltonian (Eq. (1)).
To calculate the triplet and singlet energies, we use the analogy between
atoms and quantum dots and make use of variational methods similar to
the ones in molecular physics. Using the Heitler–London ansatz with the
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ground-state single-dot orbitals, we find,(27)

J = �ω0

sinh
(

2d2 2b−1
b

)
{

3
4b

(
1+bd2

)

+ c
√

b
[
e−bd2

I0

(
bd2

)
− ed2(b−1/b) I0

(
d2 (b−1/b)

)]}
(3)

with zeroth order Bessel function I0, dimensionless distance d = a/aB

between the dots, magnetic compression factor b =
√

1+ω2
L/ω2

0, and Lar-
mor frequency ωL = eB/2mc. In Eq. (3), the first term arises from
the confinement potential, while the terms proportional to the param-
eter c=√

π/2(e2/κaB)/�ω0 result from the Coulomb interaction C; the
exchange term is recognized by its negative sign. We are mainly inter-
ested in the weak coupling limit |J/�ω0|�1, where the ground-state Hei-
tler–London ansatz is self-consistent. We plot J (B) (Eq. (3)) in Fig. 3(a)
and observe the singlet–triplet crossing, where the sign of J changes from
positive to negative (for the parameters chosen in Fig. 3(a) at B ≈ 1.3 T).
Finally, J is suppressed exponentially, ∝ exp(−2d2b), either by compres-
sion of the electron orbitals through large magnetic fields (b � 1), or by
large distances between the dots (d � 1), where in both cases the orbi-
tal overlap of the states in the two dots is reduced. The Heitler–London
result (Eq. (3)) was refined by taking higher levels and double occupancy
of the dots into account (implemented in a Hund–Mullikan approach),
which leads to qualitatively similar results,(27) in particular concerning the
singlet–triplet crossing. These results have been confirmed by numerical
calculations which take more single-particle levels into account.(32)

A characterization of a double dot can be performed with trans-
port measurements. We describe transport through a double quantum dot,
using a master equation approach.(34) We calculate differential conduc-
tance G = dI/dVSD as a function of the bias voltage VSD = 	µ/e in the
sequential tunneling and cotunneling regime. We obtain the main peak of
the Coulomb blockade diamond and its satellite peaks. Since the posi-
tions of these peaks are related to the interdot tunnel splitting and to the
singlet–triplet splitting J , one can determine these values in a standard
transport experiment. Further, our model can be checked independently,
since we also predict which satellite peaks have positive or negative val-
ues of G and since we describe structures inside the Coulomb blocked dia-
monds which are due to a combined effect of cotunneling and sequential
tunneling.(34) When we measure transport properties of a structure resem-
bling a single dot, we observe features as would be expected for a double
dot.(33) This indicates that a double dot in formed within our structure.
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Fig. 3. The exchange coupling J (solid line) for GaAs quantum dots a function of the
magnetic field B. (a) Theoretical prediction (Eq. (3)) for a double dot with confinement
energy �ω = 3 meV, inter-dot distance d = a/aB = 0.7, and c = 2.42.(27) For comparison, the
short-range Hubbard result J =4t2/U (dashed–dotted line) and the extended Hubbard result
J = 4t2/U + V (dashed line) are plotted. (b) Experimentally observed exchange coupling J

via transport measurements.(33) Although a single dot structure was used, the measurements
show double dot features, indicating that a double dot is formed within the structure. The
dependence on magnetic field B is in agreement with the theoretical predictions, in particu-
lar, J can be tuned through zero near B =1.3 T.

We can then extract the B-dependent exchange coupling from our data
which again is in agreement with theoretical predictions for double dots
(see Fig. 3(b)). That singlet-triplet crossings occur in single dots is estab-
lished experimentally.(35)

In further experiments, we measured a double quantum dot with tun-
able tunnel couplings. Spectroscopy of the double dot states was per-
formed using a quantum point contact (QPC) as a local charge sensor.
From the charge distribution on the double dot, we can deduce charge
delocalization as a function of temperature and strength of tunnel cou-
pling. Conversely, we can measure the tunnel coupling t as function of the
voltage applied on a gate in the coupling region. We find that the tun-
neling coupling is tunable from t = 0 to 22 µeV when the gate voltage is
increased.(18)

For few-electron quantum dots, the charging energies of a double
quantum dot can be tuned such that there is only a single electron in each
dot. The number of electrons on the dots can be controlled by simulta-
neously measuring the charge distribution with a QPC charge sensor(12)

(see Fig. 2), or by measuring transport through the double dot.(36)
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3. SPIN RELAXATION

The lifetime of an electron spin is described by the following two
time scales. The (longitudinal) spin relaxation time T1 describes the time
scale of a spin-flip process when the electron is aligned along the external
magnetic field. The spin decoherence time T2 is the lifetime of a coherent
superposition α|↑〉 + β|↓〉. Since quantum gate operations require coher-
ence of the underlying qubits, they must be carried out on times shorter
than T2. We note that T2 ≤ 2T1 and typically even T2 � T1,(37) thus from
the sole knowledge of T1, no lower bound for T2 can be deduced. There-
fore, it is of interest to investigate the interactions leading to decoherence
(as we do now) and to find ways of measuring the decoherence time T2 in
an experiment (see Sec. 6).

For spins on quantum dots, one possible source of spin relaxation
and decoherence is spin-orbit interaction. Calculations show that phonon-
assisted spin-flip times(38,39) in quantum dots are unusually long. This is
so because the spin-orbit coupling in two-dimensions (2D) is linear in
momentum, both for Dresselhaus and Rashba contributions. Due to this
linearity, the effective magnetic field due to spin-orbit fluctuates trans-
versely to the external magnetic field (in leading order). This implies that
T2 =2T1 for spin-orbit interaction(40) and thus long decoherence times are
expected. Another source of decoherence is the hyperfine coupling between
electron spin and nuclear spins in a quantum dot,(27,41,42) since all nat-
urally occurring Ga and As isotopes have a nuclear spin I = 3/2. It is
known that such decoherence can be controlled by a large magnetic field
or by polarizing the nuclear spins, i.e., by creating an Overhauser field.(27)

The spin relaxation time T1 of single electron spins on quantum dots
was measured in recent experiments. One way to assess T1 is to mea-
sure transport through the dot while applying double-step pulses to the
gate voltage of the dot. First, the dot is emptied and filled again with
one electron with a random spin. Then, the electron is held in the dot
during a time th. Finally, the gate voltage is tuned such that the elec-
tron can tunnel out of the dot and contribute to a current, but only
if it is in the excited spin state. Thus, the (time-averaged) current will
be proportional to the probability of having an excited spin on the dot
after time th; this probability decays on the time scale of T1. In these
experiments, the limited current sensitivity puts an upper bound on th.
Since T1 turned out to be longer than this bound, one was not able to
measure T1. Still, it is possible to obtain a lower bound of for T1 and
≈100µs was obtained for triplet to singlet transitions(43) and for N = 1
Zeeman levels.(44) Using a charge read-out device (see Sec. 5), single tun-
neling events can be observed. This allowed us to measure T1 directly
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and T
exp
1 = 1 ms was obtained at B = 8 T.(31) We now compare this value

with theoretical predictions.(40) We assume a GaAs dot with Dresselhaus
spin–orbit interaction HSO = β(−pxσx + pyσy), with quantum well thick-
ness d=5 nm, and with lateral size quantization energy �ω0 = 1.1 meV,
corresponding to a Bohr radius aB =32 nm. The material parameters are
the dielectric constant κ =13.1, coupling constant of deformation poten-
tial 0 =6.7 eV, piezoelectric constant h14 = − 0.16 C/m2, sound velocity
sj for branch j , namely s1 =4.73×105 cm/s and s2 = s3 =3.35×105 cm/s,
sample density ρc = 5.3 × 103 kg/m3, and effective mass m∗ =0.067me.
The remaining unknown parameter is the spin–orbit length λSO =�/m∗β.
It can be extracted from (independent) weak antilocalization measure-
ments,(45) where λSO ≈9µm was found. Taking the Zeeman splitting used
in the measurement of T

exp
1 , we obtain(40) T th

1,SO ≈750µs, with an error of
50% due to the uncertainty of the value of the Zeeman splitting. There is
some additional uncertainty on the value of λSO which depends on elec-
tron density and growth of the sample. For example, we find λSO ≈17µm
in other samples,(46) which would indicate a longer T1 time since T1 ∝
λ2

SO.(40) Within these uncertainties we find an agreement between experi-
ments and theory, T

exp
1 ≈T th

1,SO. Moreover, the predicted B-dependence(40)

of 1/T1 agrees well with the experiment,(31) where a plateau is seen around
B ∼ 10 T. From this we can conclude that the spin-phonon mechanism is
the dominant source for spin relaxation (and not hyperfine interaction).
Since T2 =2T1 for spin–orbit interaction(40) and since there is no difference
between decoherence and relaxation for hyperfine interaction,(41,42) we can
expect spin decoherence times T2 to be on the order of milliseconds.

4. SPIN FILTER

An important device for spintronics is a spin filter which selectively
transmits electrons with respect to their spin orientation. For quantum
computation with spin qubits, such a spin filter can be used for initiali-
zation and read out (see Secs. 1.2 and 5). We proposed to use a quan-
tum dot attached to in- and outgoing current leads as a spin filter.(24)

The direction of polarization of this spin filter can be tuned electrically
by changing the gate voltage on the quantum dot. We now describe the
operational principle of such a spin filter and present experimental imple-
mentations.(47–49)

Our spin filter proposal(24) requires a lifted spin-degeneracy on the
dot with a Zeeman splitting 	z = |µBgB|. For two electrons on the dot,
we assume a singlet ground state with energy ES, while the lowest-lying
triplet state has a higher energy ET+ . Let us consider the sequential
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tunneling transition where the number of electrons on the dots changes
from 1 to 2. The bias between the leads at chemical potentials µ1,2
is 	µ=µ1 −µ2 >0. For small bias and low temperatures such that
	µ, kT < min{	z, ET+ − ES}, only ground state transitions are energeti-
cally allowed, i.e., |↑〉 ↔ |S〉. Thus, only spin down electrons can tunnel
through the dot (see Fig. 4(a)). We calculate the current through the dot
using the standard tunneling Hamiltonian approach in the
Coulomb blockade regime(8) and the master equation for the reduced
density matrix of the dot.(24) The current in first order in tunneling is
the sequential tunneling current Is,(8) which is spin-↓ polarized. The sec-
ond-order contribution is the cotunneling current Ic

(50) which involves
a virtual intermediate state, where energy conservation can be violated
for a short time. Thus, our energetic argument does not hold here and
the cotunneling current Ic contains a spin-↑ component, reducing the

Fig. 4. Spin filter in the sequential tunneling regime.(24) (a) and (b) Operation principle of
the spin filter. (a) Regime where the only allowed 1↔2 electron transitions are ↑↔S due to
energy conservation, thus only spin-↓ electron pass through the dot (see text). (b) The 0 ↔
1 electron transition provides a spin filter for spin-↑ electrons. (c) and (d) The experimen-
tally measured dI/dVSD is plotted as function of bias voltage VSD and gate voltage VG at
B‖ =12 T.(47) In the region labeled “↓” only spin-down electrons pass through the dot while
in the region “↑” only spin-up electrons. (e) Analyzing all transitions between the dot states
|0〉, |↑〉, |↓〉, |S〉, |T0〉, and |T±〉, the predicted dI/dVSQ is shown schematically and agrees
with the experimental data. This indicates that the current is spin polarized in the regimes
labeled by arrows.(47)
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efficiency of the spin-filtering effect. For 	z <ET+ −ES, the ratio of spin-
polarized to unpolarized current is(24)

Is(↓)/Ic(↑)∼ 	2
z

(γ1 +γ2)max{kBT , 	µ} , (4)

where γl is the tunneling rate between lead l and the dot. In the sequen-
tial tunneling regime we have γl <kBT , 	µ, thus, the ratio Eq. (4) is large
and the spin-filter is efficient. We implemented this spin filter with a single
quantum dot in the few electron regime.(47) The measured currents agree
well with the theoretical predictions (see Fig. 4).

Spin filtering properties of both open(48) and Coulomb blockaded(49)

quantum dots were measured directly in a polarizer-analyzer geometry,
where the spin polarization of current emitted from the dot (polarizer) was
detected using a QPC at g = 0.5e2/h (analyzer).(51) These polarizer and
analyzer elements were coupled by transverse focusing with the use of a
small magnetic field applied perpendicular to the sample plane shown in
the inset of Fig. 5(b). The collector voltage at the QPC shows a focus-
ing peak when the distance between emitter and collector is an integer
multiple of the cyclotron diameter. Measuring at the focusing peak, we
find that in the presence of an in-plane field of a few Tesla or more, the
current through the quantum dot (which is strongly coupled to leads) is
indeed spin polarized. For the case of open dots,(48) the direction of polar-
ization can be readily tuned from along to against the applied in-plane
field, see Fig. 5. However, for the closed dots, reversed spin filtering was
not observed though ground-state peak motion was seen.(49) More work is
needed to clarify this departure from expectation.

5. READ-OUT OF A SINGLE SPIN

At the end of every (quantum) computation, one reads out the result
of the computation. For this it is sufficient to determine the state of some
qubits which are either in state |↑〉 or in state |↓〉 (we do not need to mea-
sure a coherent superposition). However, it is very hard to detect an elec-
tron spin by directly coupling to its tiny magnetic moment (on the order
of µB). This difficulty is overcome by converting the spin information into
charge information, which is then measured (we describe implementations
below). Ideally, the qubit state can be determined in a single measurement,
referred to as single shot read out. In general, however, there are some
errors associated with the measurement, thus the preparation and mea-
surement of the qubit need to be performed not only once but n times.



Controlling Spin Qubits 127

100 50 0 50 100
Vg (mV)

P
olarization P

e

0.6

0.6

100 50 0 50 100
Vg (mV)

1.4

1.2

1.0

0.8

0.6

Dot formed
B|| = 6T, gc = 0.5e2/h
B|| = 6T, gc = 2e2/h
B|| = 0T, gc = 0.5e2/h

V
c 

/ <
V

c 
>

(b)
2.0

1.8

1.6

1.4

1.2

1.0

0.8

B|| = 6T, gc = 0.5e2/h
no dot formed
dot formed

V
c 

(µ
V

)

(a)

- - -

-

-

Fig. 5. The spin polarization of current through a quantum dot is detected with an ana-
lyzer setup. The polarization is measured via the collector voltage (at the focusing peak, see
text). The polarization of the current though the quantum dot in a magnetic field fluctu-
ates as function of gate voltage. The fluctuations in the collector voltage only occur when
the emitter forms a quantum dot, the collector is spin-sensitive, and an in-plane magnetic
field is applied.(48) (a) Comparison of normalized focusing peak height as a function of Vg at
B‖ =6 T for a spin-selective collector, gc = 0.5e2/h, at B‖ = 6 T for an unpolarized collector,
gc = 2e2/h, and at B‖ = 0 with gc = 0.5e2/h. Dividing by average peak height, 〈Vc〉, normal-
izes for changes in focusing efficiency. (b) Focusing peak height at B‖ =6 T with spin-selective
collector, gc =0.5e2/h, comparing an emitter which is a point contact at 2e2/h and an emit-
ter which is a quantum dot with both leads at 2e2/h. The inset shows a micrograph of the
measured device, where the dot on the left and the QPC on the right side.(48)

We now determine n by assuming that the measurement has two possi-
ble outcomes, A↑ or A↓. Then, for an initial qubit state |↑〉, with prob-
ability p↑ the outcome is A↑, which we would interpret as “qubits was in
state |↑〉.” However, with probability 1 −p↑, the outcome is A↓ and one
might incorrectly conclude that “qubit was in state |↓〉”. Conversely, the
initial state |↓〉 leads with probability p↓ to A↓ and with 1 − p↓ to A↑.
How many times n do the preparation of a qubit in the same initial state
and subsequent measurement need to be performed until the state of the
qubit is known with some given infidelity α (n-shot read out)? We model
the read out process with a positive operator valued measure (POVM) and
find from a statistical analysis that we need(29)

n ≥ z2
1−α

(1
e

−1
)
, (5)

e =
(√

p↑p↓ −
√

(1−p↑)(1−p↓)
)2

(6)

with the quantile (critical value) z1−α of the standard normal distribution
function, �(z1−α)=1−α= (1/2)

[
1+erf(z1−α/

√
2)

]
. We interpret e as mea-

surement efficiency,(29) since it is a single parameter e∈ [0, 1] which tells us
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if n-shot read out is possible. For p↑ = p↓ = 1, the efficiency is maximal,
e=100%, and single-shot read out is possible (n=1). When the measure-
ment outcome is independent of the qubit state, i.e., p↓ = 1 − p↑ (e.g.,
p↑ =p↓ = (1/2)), the state of the qubit cannot be determined and the effi-
ciency is e=0%. For the intermediate regime, 0% <e<100%, the state of
the qubit is known after several measurements, with n satisfying Eq. (5).
In the more general case, the state of a register with k different qubits
should be determined with infidelity β. The probability that the state of
all qubits is determined correctly is 1−β = (1−α)k. One could expect that
the required n grows dramatically with k. Fortunately this is not the case,
from Eq. (5) we find that n≥2(1/e−1) log k/β is sufficient.

For the actual implementation of the spin qubit read out, the
most prominent idea is to transfer the qubit information from spin
to charge,(9,24,28,29,31,52,53) which can then be accessed experimentally
with sensitive voltage or current measurements. A straightforward con-
cept yielding a potentially 100% reliable measurement requires a “spin-fil-
ter”(24) which allows only, say, spin-up but no spin-down electrons to pass
through, as it is described in Sec. 4. For performing a measurement of a
spin in a quantum dot, the spin filter is connected between this dot and
a second (“reference”) dot. The charge distribution on this system can be
detected with sensitive electrometers(54) by coupling the dots to a quantum
point contact(12,55) or to a single-electron transistor (SET).(56) Then, if the
spin had been up, it would pass through the spin filter into the second dot
and a change in the charge distribution would be measured, while there is
no change for spin down(9). Instead of a spin filter, one can use different
Zeeman splittings on qubit and reference dot or make use the Pauli prin-
ciple to read out the spin qubit via charge detection.(29)

Finally, we consider the qubit dot coupled to a lead instead of a ref-
erence dot. For Zeeman splittings larger than temperature, one can tune
the dot levels such that only the excited spin state, |↓〉, can tunnel into
the leads(28) with rate γout (spin ↑ electrons can tunnel only onto the
dot). Such a tunneling event changes the number of electrons on the dot
and produces a pulse in the QPC current, whose duration must exceed
tm to be detected, until a spin ↑ electron tunnels onto the dot with rate
γin. After waiting a time t to detect such a signal, we have p↑ = 1 and
e=p↓ =(1−e−tγout)e−tmγin . We implemented this scheme experimentally.(31)

Accounting also for finite T1 and temperature, we obtain p↑ = 92% and
p↓ = 70%. This means that the measurement efficiency is e = 41%, which
is already very close to single-shot read out. For example, after 16 mea-
surements, one knows the state of a 10 qubit register with an error smaller
than 10−4. Further, this single spin detection scheme made it possible to
determine the T1 times of electron spins on quantum dots,(31) see Sec. 3.
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6. DETECTION OF SINGLE-SPIN DECOHERENCE

As it was seen in Sec. 3, it is an important research goal to mea-
sure the decoherence time T2 of single spins on quantum dots. For this, we
now describe how to extract the decoherence time T2 from the sequential
tunneling current through a quantum dot, in the presence of an applied
electron spin resonance (ESR) field producing spin-flips on the dot.(28) We
assume that the Zeeman splitting on the dot is gµBB >	µ,kBT , while the
Zeeman splitting in the leads is different, such that the effect of the ESR
field on the leads can be neglected. This can be achieved, e.g., by using
materials with different g-factors for the dot and the leads. We derive
the master equation and find the stationary reduced density matrix of
the quantum dot in the basis |↑〉, |↓〉, |S〉 (with corresponding energies
0=E↑ <E↓ <ES). We can assume that the triplet is higher in energy and
does not contribute to the sequential tunneling current. In the regime ES >

µ1 > ES − gµBB > µ2, the current is blocked in the absence of the ESR
field due to energy conservation. We calculate the the stationary current
and find(28)

I (ω)∝ V↓↑
(ω−gµBB)2 +V 2

↓↑
, (7)

where the width of the resonance at ω = gµBB is given by the total spin
decoherence rate V↓↑ = (WS↑ +WS↓)/2+1/T2. Here, WSσ denotes the rate
for the transition from the state |σ 〉 = |↑〉, |↓〉 to the singlet |S〉 due to
electrons tunneling from the leads onto the dot. Therefore, the inverse of
the observed line width 1/V↓↑ represents a lower bound for the intrinsic
single-spin decoherence time T2. For finite temperatures and in the linear
response regime 	µ < kT , the current has roughly the standard sequen-
tial tunneling peak shape cosh−2[(ES −E↓ −µ)/2kBT ] as a function of the
gate voltage Vgate ∝ µ = (µ1 + µ2)/2, while the width of the resonance in
Eq. (7) as a function of ω remains unaffected.

The spin of a quantum dot in the presence of an ESR field shows
coherent Rabi oscillations. It is possible to observe these Rabi oscillations
of a single spin via time-averaged currents when ESR pulses are applied.
Then, the time-averaged current Ī (tp) as a function of the pulse length tp
exhibits the Rabi oscillations of the spin-state of the dot,(28) see Fig. 6.
Observing such Rabi oscillations of a single spin would be a significant
achievement, since this implied an working implementation of a one qubit
gate.
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(a) (b)

Fig. 6. Single spin Rabi oscillations, generated by ESR pulses of length tp, are observable
in the time-averaged current I (tp) through a quantum dot.(28) We take the amplitude of ESR
field as B0

x = 20 G (and g = 2), and 	µ > kT , γ1 = 2 × 107 s−1, γ2 = 5γ1, T1 = 1µs, and
T2 = 150 ns. (a) Evolution of the density matrix ρ, where a pulse of length tp = 200 ns is
switched on at t = 0, obtained via integration of master equation. (b) Time-averaged current
Ī (tp) (solid line) for a pulse repetition time tr = 500 ns. We also show the current where γ1

and γ2 are increased by a factor of 1.5 (dotted) and 2 (dash–dotted). Calculating the current
contributions analytically, we obtain Ī (tp)∝ 1−ρ↑(tp) , up to a background contribution Ībg
for times t < tp, which is roughly linear in tp. Thus, the current Ī probes the spin state of the
dot at time tp and therefore allows one to measure the Rabi oscillations of a single spin.(28)

7. CONCLUSIONS

We described the basic requirements for building a quantum com-
puter with spin qubits. We addressed several concrete implementation
issues for spin qubits, namely coupling between quantum dots, spin relax-
ation and decoherence measurements, spin filter devices, and single-spin
read out setups. For all these issues, we reviewed theoretical and experi-
mental results. These results give further insight in the details of quantum
computing with spin qubits.
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