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Abstract. We study the spin filling of a semiconductor quantum dot using
excited-state spectroscopy in a strong magnetic field. The field is oriented in
the plane of the two-dimensional electron gas in which the dot is electrostatically
defined. By combining the observation of Zeeman splitting with our knowledge
of the absolute number of electrons, we are able to determine the ground state
spin configuration for one to five electrons occupying the dot. For four electrons,
we find a ground state spin configuration with total spin S = 1, in agreement with
Hund’s first rule. The electron g-factor is observed to be independent of magnetic
field and electron number.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 7 (2005) 182 PII: S1367-2630(05)00389-7
1367-2630/05/010182+11$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:laurens@qt.tn.tudelft.nl
http://www.njp.org/


2 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Zeeman splitting and spin filling 3
3. Device characteristics 4
4. N = 0 ↔ 1 transition 6
5. N = 1 ↔ 2 transition 6
6. N = 2 ↔ 3 transition 8
7. N = 3 ↔ 4 transition 8
8. N = 4 ↔ 5 transition 9
9. Conclusion 10
Acknowledgments 10
References 10

1. Introduction

A single electron spin confined in a semiconductor quantum dot (QD) is considered a promising
candidate for the implementation of a qubit [1, 2]. Also the joint spin state of N electrons
on a single dot may be used for quantum computation schemes. For instance, as long as the
N-electron ground state has spin S = 1/2, it can be used in a similar way as the spin of a
single electron. Furthermore, proposals exist for encoding a qubit in two specific spin states of
three electrons in a single dot, and for controlling this qubit fully electrically [3]. Therefore,
it is important to understand the interaction of multiple electron spins confined in a QD, and
specifically the spin configuration of the ground state. This can be done by studying spin filling,
i.e. by determining the spin of successive electrons that are added to the dot, starting from zero
electrons.

QDs defined in pillars etched from a GaAs/AlGaAs double-barrier heterostructure (so-
called ‘vertical’ QDs) have been studied extensively, showing spin filling obeying Hund’s rule
[4], triplet–singlet ground state transitions [5] and a dependence of spin filling on the anisotropy
of the confinement potential [6]. Furthermore, zero magnetic field addition spectra have revealed
an atomic-like shell structure induced by a two-dimensional harmonic potential. Therefore, these
devices are commonly referred to as ‘artificial atoms’. The addition spectrum of few-electron
QDs, defined electrostatically within a two-dimensional electron gas (2DEG) by means of surface
gates (so-called ‘lateral’ QDs), has also been studied [7]. Although a two-electron singlet–triplet
ground state transition has been observed in these systems [8], evidence for a shell structure and
spin filling obeying Hund’s rule has not yet been found.

Here we study the spin filling of a few-electron lateral QD by performing excited-
state spectroscopy at a fixed magnetic field B|| of 10 T, applied parallel to the 2DEG.
Firstly, we explain in detail our general method for determining spin filling. Then the
device characteristics and settings are described. Finally, we apply the method in order to
determine spin filling for five successive transitions in the electron number, starting from an
empty dot.
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2. Zeeman splitting and spin filling

The method for determining spin filling is based on the facts that any single orbital can be
occupied by at most two electrons, and that these electrons must have antiparallel spins, due to
the Pauli exclusion principle. Therefore, as we add one electron to a dot containing N electrons,
there are only two scenarios possible: (I) the electron moves into an empty orbital, or (II) it moves
into an orbital that already holds one electron. We will now show that (in a high magnetic field)
for the transition from the N-electron ground state, GS(N), to the (N + 1)-electron ground state,
GS(N + 1), these two scenarios always correspond to the addition of a spin-up electron and a
spin-down electron respectively.

We first consider case I where an electron enters an empty orbital. In a strong magnetic
field B||, spin-up electrons have a lower energy than spin-down electrons2 due to the Zeeman
splitting �EZ = |g|µBB||, where µB = 58 µeV T−1 is the Bohr magneton. Therefore, if the
orbital is empty, addition of a spin-up electron is energetically favoured and thus takes the dot
from GS(N) to GS(N + 1). In contrast, addition of a spin-down electron takes the dot from
GS(N) to the (N + 1)-electron excited state, ES(N + 1), which lies �EZ higher in energy.

Next we look at case II, where an electron moves into an orbital with already one electron
present. The electron that already occupies the orbital has spin-up if the dot is in GS(N), as
explained above. Therefore, the electron added in the transition from GS(N) to GS(N + 1) must
have spin-down in order to satisfy the Pauli exclusion principle. A spin-up electron can only
be added to the same orbital if the first electron is spin-down, i.e. when the dot starts from
ES(N), �EZ higher in energy than GS(N). Thus, addition of a spin-up electron corresponds to
a transition from ES(N) to GS(N + 1).

Comparing the two cases, we see that in case I, where a spin-up electron is added, there is
an (N + 1)-electron ES separated from GS(N + 1) by �EZ, while in case II, where a spin-down
electron is added, there is an N-electron ES, separated from GS(N) by �EZ. Thus, the spin
filling has a one-to-one correspondence with the excited-state spectrum [9].

We can discriminate between cases I and II by looking at electron transport through the
dot as a function of the voltage bias (VSD) applied between source and drain contacts, and gate
voltage. Figures 1(a) and (b) schematically show the expected result of such a measurement for
cases I and II respectively. Lines in the differential conductance dI/dVSD indicate where electron
transitions involving ground and excited states become energetically accessible. The transition
from GS(N) to GS(N + 1) is only allowed in the V-shaped region spanned by the two solid lines
in dI/dVSD that intersect at VSD = 0. These lines thus form the edges of the Coulomb blockaded
(CB) region. The onset of the transition from GS(N) to ES(N + 1), as in case I, appears as a line
terminating at the edge of the (N + 1)-electron CB region, at point P in figure 1(a). In contrast,
the onset of the transition from ES(N) to GS(N + 1), as in case II, appears as a line terminating
at the edge of the N-electron CB region, at point Q in figure 1(b).

Thus, if we see a line at a distance �EZ from the edge of the CB region and terminating at
the (N + 1)-electron CB region, we have case I. Here a spin-up electron is added to the dot. In
contrast, if there is a line at a distance �EZ from the CB region that terminates at the N-electron
CB region, we have case II, where a spin-down electron is added to the dot.

The main requirement for this method is the ability to identify the Zeeman splitting in the
excited-state spectrum. In GaAs/AlGaAs lateral QDs Zeeman splitting has already been observed

2 Since the g-factor in GaAs is negative, the electron spin is aligned with the magnetic moment of the electron, and
spin-up (aligned with the magnetic field) has a lower energy than spin-down.
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Figure 1. Schematic representation of excited-state spectra for case I (a) and case
II (b). Shown is the differential conductance dI/dVSD as a function of VSD and
gate voltage Vgate in the presence of a strong in-plane magnetic field. The lines
indicate where the transitions depicted in the corresponding diagrams become
energetically accessible. Current can only flow in the V-shaped region defined
by the GS(N) to GS(N + 1) transition (line A); outside this region the dot is
in Coulomb blockade and the number of electrons on the dot is fixed. When a
transition involving an ES becomes accessible, the current changes, leading to an
extra line in dI/dVSD (lineA′). In case I, this line terminates at the (N + 1)-electron
CB region (point P in (a)), whereas in case II the line terminates at the N-electron
CB region (point Q in (b)). Each of the excited-state spectra is symmetric with
respect to VSD. Therefore, the spectra for VSD < 0 can be obtained by rotating the
shown spectra about the Vgate axis.

in several experiments [10]–[13]. We emphasize that the method is valid regardless of the spin
S of the ground states involved, as long as the addition of one electron changes the spin of the
ground state by |�S| = 1/2.3 We now utilize this method to determine the change in spin at
subsequent electron transitions in a lateral GaAs QD containing zero to five electrons.

3. Device characteristics

The lateral QD is defined by Ti/Au gate electrodes patterned on top of a Si modulation doped
GaAs/AlxGa1−xAs heterostructure (x = 0.265), containing a high mobility 2DEG 60 nm below
the surface, see figure 2(a). Annealing of Ni/AuGe/Ni contacts provides electrical contact to the
source and drain reservoirs in the 2DEG. The 2DEG has an electron density ns = 4.0 × 1015 m−2.
This sample was cooled down with +266 mV on each of the surface gates in order to reduce
background charge fluctuations [15]. The voltage on gate electrode T, VT , is used to vary the
electrochemical potential of the dot in each of the excited-state spectra. A magnetic field is
applied parallel to the 2DEG to minimize additional lateral confinement and to exclude Landau
level formation. All measurements are performed in a dilution refrigerator at a base temperature
T = 15 mK.

3 If |�S| > 1/2, the (N + 1)-electron GS cannot be reached from the N-electron GS by adding a single electron,
leading to a spin blockade of electron transport through the dot, see [14].
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Figure 2. (a) Scanning electron micrograph of the device showing Ti/Au gate
electrodes lying on top of a GaAs/AlGaAs heterostructure. The gate electrodes
can locally deplete the 2DEG when negatively biased. Gate electrodes L, R and T
are used to form the QD, indicated by the white dashed circle. Gate electrode P is
left floating. (b) Level structure of a QD with anisotropic parabolic confinement
in zero and finite magnetic field. Two electrons with opposite spin can occupy the
orbital states (1s), (2p) and (2p′). The latter two orbitals are separated in energy
by δ due to anisotropy of the confinement potential.

We tune the QD to the few-electron regime at B|| = 0 T. We identify the 0 ↔ 1 electron
transition by the absence of further electron transitions in sweeping the gate voltages to more
negative values under large applied source–drain voltage [16]. Then we track the 0 ↔ 1 electron
transition as the magnetic field is swept to B|| = 10 T.

The charging energy of the dot,EC, is 4.8 meV (for adding a second electron to a one-electron
dot). For N = 1, the level spacing from the orbital ground state to the first orbital excited state is
1.7 meV (data not shown). The level spacing between the first and second orbital excited state
is considerably smaller, 0.8 meV. This implies that the confinement potential of the dot has no
circular symmetry as in [17]. We nevertheless adopt the nomenclature from [16, 17] to denote
the lowest orbital states in our QD as (1s), (2p), etc. In fact, we shall see that the data is well
explained by assuming an anisotropic confinement potential in the dot, where the twofold orbital
degeneracy of the first excited state (2p) is lifted. This gives rise to a level structure as shown
in figure 2(b), in which the two (2p)-like orbitals, now denoted (2p) and (2p′), are offset by
an amount δ = 0.8 meV. In lateral QDs, the spacing between successive orbitals is found to be
dependent on gate voltage (and thus electron number) [8, 18, 19]; generally, the level spacing
decreases as the size of the dot is increased (which is needed to allow more electrons on the dot).
Therefore, we also expect the value of δ to decrease as we increase the number of electrons on
the dot.

We set the tunnel rate of the incoming barrier �L much smaller than the tunnel rate for the
outgoing barrier �R. As a result, in all of the excited-state spectra shown, the intensity of the lines
involving transitions to or from excited states is enhanced when they run from bottom left to top
right. In turn, the intensity of the lines involving excited states and running from top left to bottom
right is suppressed [20]. Thus, lines corresponding to transitions from GS(N) to ES(N + 1) (line
A′ in figure 1(a)) are most easily observed for VSD > 0, while lines corresponding to transitions
from ES(N) to GS(N + 1) (line A′ in figure 1(b)) are most easily seen for VSD < 0.
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Figure 3. (a) Colour scale plot of the differential conductance dI/dVSD as a
function of VSD and gate voltage VT near the 0 ↔ 1 electron transition, at
B|| = 10 T. Zeeman splitting of the orbital ground state is clearly observed (A–A′).
The vertical shift in the data near VT = −1430 mV is caused by a background
charge rearrangement in the environment of the dot. (b) Extracted Zeeman
splitting �EZ at the 0 ↔ 1 electron transition as a function of B||. A linear fit of
�EZ (red curve) results in |g| = 0.27 ± 0.02. The dashed black line corresponds
to the Zeeman splitting in bulk GaAs, where g0 = −0.44.

4. N = 0 ↔ 1 transition

The excited-state spectrum obtained around the 0 ↔ 1 transition is shown in figure 3(a). Clearly
two parallel lines are observed, A and A′. The separation between these lines increases linearly
with B||, and thus corresponds to the Zeeman splitting. From the spacing between lines A and A′

(to be precise, from the value of VSD at point P), we extract �EZ = 0.16 ± 0.01 meV at 10 T.
Since A′ terminates in the N = 1 CB region, the electron added to the empty dot to form the
N = 1 GS has spin-up (see figure 1(a)), as expected.

In figure 3(b), the Zeeman energy �EZ at the 0 ↔ 1 transition is plotted versus applied
magnetic field in the range from 5.5 to 14 T. For B|| < 5.5 T, we cannot clearly resolve the Zeeman
splitting from the spectroscopy data. As a reference, the Zeeman splitting �EZ expected for bulk
GaAs is plotted with |g0| = 0.44 [21] (dashed black line). Clearly, the g-factor we extract from
figure 3(b) is independent of field. Linear fitting of the data points results in a g-factor value of
0.27 ± 0.02. This value is lower than the bulk value of GaAs. Deviations of the g-factor from g0

in QDs and possible explanations for this effect have been reported before [10]–[12].

5. N = 1 ↔ 2 transition

Next we tune the dot to the 1 ↔ 2 electron transition. At zero magnetic field, the ground state
for a two-electron QD is always a spin-singlet state |S 〉, where two electrons with opposite spin
occupy the lowest orbital and the total spin S = 0 [22]. We expect that this is still true for an
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Figure 4. (a) Colour scale plot of the differential conductance dI/dVSD as a
function of VSD and gate voltage VT near the 1 ↔ 2 electron transition, at
B|| = 10 T. (b) Left: ground state spin configuration for a two-electron dot. A
spin-down electron (red) is added and pairs with the spin-up electron already
present, to form a singlet state |S 〉 with total spin S = 0. Right: spin configuration
of an excited state. The second spin-up electron occupies the (2p) orbital to form
a two-electron triplet state |T 〉 with total spin S = 1. When the second spin-up
electron occupies the (2p′) orbital an excited triplet state is formed.

in-plane field of 10 T, as the Zeeman energy is much smaller than the zero-field singlet–triplet
energy separation [13].

The dI/dVSD data obtained for the 1 ↔ 2 electron transition is shown in figure 4(a). Two
lines A and A′ separated by 0.16 ± 0.01 meV are visible for VSD < 0. This is exactly the same
energy scale of the Zeeman splitting found for the 0 ↔ 1 transition. Because A′ terminates in Q

at the edge of the N = 1 CB region (and not at the edge of the N = 2 CB region), we conclude
that the transition from GS(1) to the GS(2) involves adding a spin-down electron. The spin-down
electron pairs with the spin-up electron already present in the (1s) orbital to form a two-electron
singlet state |S 〉, as illustrated in the left panel of figure 4(b).

For the colour scale chosen, parts of line A are difficult to observe. Therefore, dashed yellow
lines are added as a guide to the eye. For VSD > 0, line A′ is also hardly visible. Its position is
indicated by a black dashed line. The absence of this latter line is caused by the asymmetry of
the tunnel barriers, as explained earlier. For the same reason, the lines B–B′ and C–C′ are hardly
visible for VSD < 0. Line A is weaker than line A′, because in a strong magnetic field spin-up
electrons generally couple better to the source and drain reservoirs than spin-down electrons,
even if the magnetic field is applied in the plane of 2DEG [23].

The lines B–B′ correspond to the onset of transitions involving the three triplet states. These
lines too are separated by the Zeeman splitting; B and B′ involve transport of spin-up and spin-
down electrons respectively [13]. The distance between A and B′ gives the singlet–triplet energy
splitting EST , 0.56 ± 0.02 meV. The data also shows a third set of parallel lines with the same
spacing, C–C′. The fact that the pair of lines C–C′ have a different intensity than the pair of lines
B–B′ suggests that different orbitals are involved. We believe that the lines C–C′ correspond to
transitions to and from triplet states with one electron in the (2p′) orbital instead of in the (2p)
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Figure 5. (a) Colour scale plot of the differential conductance dI/dVSD as a
function of VSD and gate voltage VT near the 2 ↔ 3 electron transition, at
B|| = 10 T. (b) Left: ground state spin configuration for a three-electron dot. Right:
spin configuration of the excited state that can be reached starting at line B in (a).

orbital. Here, the offset between the (2p) and (2p′) orbitals, δ, is 0.52 meV (B′–C′), somewhat
smaller than the value at the 0 ↔ 1 electron transition.

6. N = 2 ↔ 3 transition

Next we move on to the 2 ↔ 3 electron transition. We have seen that the two-electron ground
state is a singlet state |S 〉, where two electrons with opposite spin occupy the (1s) orbital. When
a third electron is added, it has to occupy a different orbital in order to satisfy the Pauli exclusion
principle.

The dI/dVSD data we find is shown in figure 5(a). We notice several important features.
A first pair of lines, A–A′, is split by 0.17 ± 0.01 meV, the Zeeman splitting. Since these lines
terminate at the edge of the N = 3 CB region, the transition from GS(2) to GS(3) involves adding
a spin-up electron. The three-electron ground state then corresponds to the situation where the
third electron (with spin-up) occupies the orbital (2p), as shown in the left panel of figure 3(b).

A second set of Zeeman split lines, B–B′, runs parallel to the lines A and A′, with smaller
amplitude. The separation between both sets of transitions, δ, is 0.34 meV. In our spin filling
picture, the lines B and B′ correspond to electron transitions where the third electron occupies
the (2p′) orbital, as in the right panel of figure 3(b). The value of δ we find here is smaller than
at the 1 ↔ 2 electron transition, as expected from our earlier considerations.

7. N = 3 ↔ 4 transition

In figure 6(a), we show the excited-state spectrum for the 3 ↔ 4 electron transition. Ignoring
spin-exchange interactions, one expects a four-electron dot with total spin S = 0, where two
electrons occupy the (1s) orbital and two electrons occupy the (2p) orbital. This implies that a
spin-down electron must be added to a three-electron dot in the GS in order to reach the N = 4,
S = 0 state.
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Figure 6. (a) Colour scale plot of the differential conductance dI/dVSD as a
function of VSD and gate voltage VT near the 3 ↔ 4 electron transition, at
B|| = 10 T. (b) Left: ground state spin configuration of the four-electron dot
(S = 1). Right: spin configuration of one possible spin-excited state, where the
(2p′) orbital is occupied by a spin-down electron.

However, the data in figure 6(a) indicates that the fourth electron added to the dot has spin-up,
because the line A′, separated from line A by the Zeeman splitting (�EZ = 0.17 ± 0.01 meV),
terminates at the edge of the N = 4 CB region. Since both the third and fourth electron have
spin-up, they occupy different orbitals, (2p) and (2p′), as shown in the left panel of figure 6(b).
The N = 4 ground state thus has S = 1. This N = 4 ground state can be understood when we
take into account the exchange interaction Kab between the spins in the (2p) and (2p′) orbital
and the terms Caa and Cab, representing the direct Coulomb energy when the two spins are in
the same or in a different orbital state respectively [16]. S = 1 spin filling is favoured when
Kab + |Caa − Cab| > δ.

This particular spin configuration of the N = 4 ground state is related to Hund’s first rule,
which states that a shell of degenerate orbitals will, as much as possible, be filled by electrons
with parallel spins, up to the point where the shell is half filled. Exchange energy Kab (causing
a lowering of the Coulomb energy when spins align parallel in different orbitals) reduces the
total energy and favours the S = 1 state. This state can only exist when the offset between the
(2p) orbitals, δ, is small compared to the exchange energy and the difference in direct Coulomb
energy terms [6].

8. N = 4 ↔ 5 transition

As we have seen, the four-electron ground state has a total spin S = 1, in agreement with Hund’s
first rule. When the fifth electron is added, the total spin of the system is expected to change back
from S = 1 to S = 1/2 because of spin pairing in the (2p) orbital. A less likely option for the
transition from GS(4) to GS(5) is that the fifth electron tunnels into the next empty orbital.

In figure 7(a), we show the excited-state spectrum for the 4 ↔ 5 electron transition. Indeed,
the transition from GS(4) to GS(5) corresponds to adding an electron with spin-down, as the line
A′ terminates at the edge of the N = 4 CB region (as before, some of the lines are hardly visible;
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Figure 7. (a) Colour scale plot of the differential conductance dI/dVSD as a
function of VSD and gate voltage VT near the 4 ↔ 5 electron transition, at
B|| = 10 T. (b) Left: ground state spin configuration of a five-electron dot. Right:
spin configuration of the spin-excited state. In both cases, the total spin is S = 1/2.

their position is indicated by yellow dashed lines). The resulting spin configuration for five
electrons is indicated in the left panel of figure 7(b). The added spin-down electron occupies the
(2p) orbital. The Zeeman splitting extracted from the data (VSD < 0) is �EZ = 0.17 ± 0.01 meV.

9. Conclusion

We have determined the spin filling of a few-electron lateral QD containing one up to five electrons
in a parallel magnetic field of 10 T. The spin filling was extracted without magnetic field sweeps,
by looking at the position of the excited spin state in the spectroscopy data. The Zeeman splitting
is equal for all orbitals and independent of the number of electrons on the dot. The ground state
of a four-electron dot is a S = 1 Hund state. Field dependence of the Zeeman splitting for the
0 ↔ 1 electron transition yields a field-independent g-factor value of 0.27 ± 0.02.

Acknowledgments

This work was supported by the Dutch Science Foundation NWO/FOM, the DARPA-QUIST
program, the ONR, the International Cooperative Research Project (ICORP) and the EU-RTN
network on spintronics. We gratefully acknowledge fabrication support from W J M Naber and
valuable discussions with J M Elzerman.

References

[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] DiVincenzo D P 2000 Nature 408 339
[3] Kyriakidis J et al 2005 Phys. Rev. B 71 125332

New Journal of Physics 7 (2005) 182 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[4] Tarucha S et al 1996 Phys. Rev. Lett. 77 3613
[5] Tarucha S et al 2000 Phys. Rev. Lett. 84 2485
[6] Tarucha S et al 2000 Appl. Phys. A 71 367
[7] Ciorga M et al 2000 Phys. Rev. B 61 R16315
[8] Kyriakidis J et al 2002 Phys. Rev. B 66 035320
[9] Cobden D H et al 1998 Phys. Rev. Lett. 81 681

[10] Hanson R et al 2003 Phys. Rev. Lett. 91 196802
[11] Potok R M et al 2003 Phys. Rev. Lett. 91 016802
[12] Kogan A et al 2004 Phys. Rev. Lett. 93 166602
[13] Hanson R et al 2004 Phys. Rev. B 70 241304
[14] Weinmann D et al 1995 Phys. Rev. Lett. 74 984
[15] Pioro-Ladrière M et al 2005 Preprint cond-mat/0503602
[16] Kouwenhoven L P et al 2001 Rep. Prog. Phys. 64 701
[17] Darwin C G 1930 Proc. Camb. Phil. Soc. 27 86

Fock V 1928 Z. Phys. 47 446
[18] Kogan A et al 2003 Phys. Rev. B 67 113309
[19] Zumbühl D M et al 2004 Phys. Rev. Lett. 93 256801
[20] Hayashi T et al 2003 Phys. Status Solidi b 238 262
[21] Weisbuch C and Hermann C 1977 Phys. Rev. B 15 816
[22] Ashcroft N W and Mermin N D 1974 Solid State Physics (New York: Saunders)
[23] Hanson R et al 2004 Proc. 39th Rencontres de Moriond (see also Preprint cond-mat/0407793)

New Journal of Physics 7 (2005) 182 (http://www.njp.org/)

http://www.njp.org/

