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Abstract. We report measurements and simulations on a fully tunable double quantum dot circuit, integrated with two
quantum point contacts that serve as charge detectors. The circuit is defined in a two-dimensional electron gas by means
of surface gates on top of a GaAs/AlGaAs heterostructure. Full control over the electron number (down to zero), the dot-lead
coupling and the inter-dot tunnel coupling is experimentally demonstrated. Computer simulations can map out the double dot
charging diagram and show that the charge sensitivity can be significantly enhanced by improving the design of the circuit.

INTRODUCTION

The spin of single electron confined in a semiconductor
quantum dot [1] is a promising candidate for a scalable
quantum bit [2], since it combines the single-electron
charge degree of freedom (which is easy to manipulate
with electrical voltages) with the spin degree of freedom
(which is expected to exhibit a long coherence time). For
the control of one-electron quantum states by electrical
voltages, the challenge is to realize an appropriate quan-
tum dot circuit containing just a single conduction elec-
tron, with the ability to read out the quantum state of the
electron.

Few-electron quantum dots have been realized in self-
assembled structures [3] and also in small vertical pil-
lars defined by etching [4]. The disadvantage of these
types of quantum dots is that they are hard to integrate
into circuits with a controllable coupling between the
elements, although integration of vertical quantum dot
structures is currently being pursued. An alternative can-
didate is a system of lateral quantum dots defined in a
two-dimensional electron gas (2DEG) by surface gates
on top of a semiconductor heterostructure [1]. Here, in-
tegration of multiple dots is straightforward by simply
increasing the number of gate electrodes. In addition, the
coupling between the dots can be controlled, since it is
set by gate voltages. The challenge is to reduce the num-
ber of electrons to one per quantum dot. This has long
been impossible, since reducing the electron number de-
creases at the same time the tunnel coupling, resulting in
a current too small to be measured [5].

In the first part of this work, we experimentally
demonstrate double quantum dot devices containing a
voltage-controllable number of electrons down to a sin-
gle electron [6]. We have integrated these devices with
charge detectors that can read out the charge state of the
double quantum dot with a sensitivity much better than a
single electron charge. The measurements show that even
in the few-electron regime, both the coupling to the leads
and the interdot tunnel-coupling can be fully controlled.

In the second part, we present computer simulations
of the devices. The charging diagram for the first two
electrons in the double dot circuit is calculated [7]. Then,
we use the simulations to test different circuit designs.
We find that by proper design of the circuit the charge
sensitivity can be significantly enhanced [8].

EXPERIMENTS

Device Parameters

We study two nominally identical devices, both as
shown in Fig. 1a. They are made from a heterostruc-
ture consisting of four different layers of semiconduc-
tor materials (from top to bottom): a 50 Å thick n-type
(ND = 1.5× 1018 cm−3) GaAs layer, a 650 Å thick n-
type (ND = 1.0 × 1018 cm−3) Al0.27Ga0.73As layer, a
200 Å thick undoped Al0.27Ga0.73As layer, and a 1000
nm thick GaAs layer. The 2DEG, which has a density
ns = 2.9×1011 cm−2, is formed at the interface between
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FIGURE 1. (a) Scanning Electron Micrograph of the metal-
lic surface gates. White dotted circles indicate the two quan-
tum dots. White arrows show the possible current paths. A
bias voltage, VDOT , can be applied between source 2 and drain
1, leading to current through the dots, IDOT . A bias voltage,
VSD1 (VSD2), between source 1 (source 2) and drain 1 (drain 2),
yields a current, IQPC , through the left (right) QPC. (b) Con-
ductance, G, of the left QPC versus the gate voltage, VQ−L,
showing the last quantized plateau and the transition to com-
plete pinch-off. The cross indicates the point of highest charge
sensitivity. (c) Current through the left QPC, IQPC, versus left-
dot gate voltage, VM . (VSD1 = 250 µV, VDOT = 0, VSD2 = 0).
The steps, indicated by the arrows, correspond to a change in
the electron number of the left dot. Encircled inset: the last step
(50 pA high), with the linear background subtracted. (d) Up-
per part: Coulomb peaks measured in transport current through
the left dot. Shown is IDOT versus VM with VDOT = 100 µV.
Lower part: changes in the number of electrons on the left dot,
measured with the left QPC. Shown is dIQPC/dVM versus VM
(VSD1 = 250 µV, VDOT = 0).

the undoped AlGaAs layer and the GaAs layer (900 Åbe-
low the surface).

Both devices consist of a double quantum dot and two
quantum point contacts (QPCs). The layout is an exten-
sion of previously reported single quantum dot devices
[5]. The double quantum dot is defined by applying neg-
ative voltages to the 6 gates in the middle of the figure.
Gate T in combination with the left (right) gate, L (R),
defines the tunnel barrier from the left (right) dot to drain
1 (source 2). Gate T in combination with the middle,
bottom gate, M, defines the tunnel barrier between the
two dots. The narrow "plunger" gate, PL (PR), on the left
(right) is used to change the electrostatic potential of the
left (right) dot. The plunger gates can be connected to a
coaxial cable so that we can apply high-frequency sig-
nals. In the present experiments we do not apply dc volt-
ages to PL. In order to control the number of electrons on
the double dot, we use gate L for the left dot and PR or
R for the right dot. All measurements are performed at a
temperature of 10 mK.

We first study sample 1. We characterize the individual

dots using standard Coulomb blockade experiments [1],
and find that the energy cost for adding a second electron
to a one-electron dot is 3.7 meV. The excitation energy
(i.e. the difference between the first excited state and the
ground state) is 1.8 meV at zero magnetic field. For a
two-electron dot the energy difference between the sin-
glet ground state and the triplet excited state is 1.0 meV
at zero magnetic field. Increasing the field (perpendicu-
lar to the 2DEG) leads to a transition from a singlet to a
triplet ground state at about 1.7 Tesla.

Charge Detection With A QPC

In addition to current flowing through the quantum
dot, we can measure the charge on the dot using one of
the QPCs [9, 10]. We define only the left dot (by ground-
ing gates R and PR), and use the left QPC as a charge
detector. The QPC is formed by applying negative volt-
ages to Q-L and L. This creates a narrow constriction
in the 2DEG, with a conductance, G, that is quantized
when sweeping the gate voltage VQ−L. The plateau at
G = 2e2/h and the transition to complete pinch-off (i.e.
G = 0) are shown in Fig. 1b. At the steepest point, where
G ≈ e2/h, the QPC-conductance has a maximum sensi-
tivity to changes in the electrostatic environment, includ-
ing changes in the charge of the nearby quantum dot. As
can be seen in Fig. 1c, the QPC-current, IQPC, decreases
when we make the left-dot gate voltage, VM, more neg-
ative. Periodically this changing gate voltage pushes an
electron out of the left dot. The associated sudden change
in charge increases the electrostatic potential in the QPC,
resulting in a step-like structure in IQPC (see expansion
in Fig. 1c, where the linear background is subtracted).
So, even without passing current through the dot, IQPC
provides information about the charge on the dot. To en-
hance the charge sensitivity we apply a small modulation
(0.3 mV at 17.7 Hz) to VM and use lock-in detection to
measure dIQPC/dVM [10]. Figure 1d shows the resulting
dips, as well as the corresponding Coulomb peaks mea-
sured in the current through the dot. The coincidence of
the two signals demonstrates that the QPC indeed func-
tions as a charge detector. From the height of the step
in Fig. 1c (50 pA, typically 1-2 percent of the total cur-
rent), compared to the noise (5 pA for a measurement
time of 100 ms), we can estimate the sensitivity of the
charge detector to be about 0.1e, with e being the single
electron charge. The important advantage of QPC charge
detection is that it provides a signal even when the tunnel
barriers of the dot are so opaque that IDOT is too small to
measure [9, 10]. This allows us to study quantum dots
even while they are virtually isolated from the leads.



Double Dot In The Few-Electron Regime

Next, we study the charge configuration of the dou-
ble dot, using the QPC on the right as a charge detec-
tor. We measure dIQPC/dVL versus VL, and repeat this for
many values of VPR. The resulting two-dimensional plot
is shown in Fig. 2a. Dark lines signify a negative dip in
dIQPC/dVL, corresponding to a change in the total num-
ber of electrons on the double dot. Together these lines
form the well-known "honeycomb diagram" [11, 12].
The almost-horizontal lines correspond to a change in the
electron number in the left dot, whereas almost-vertical
lines indicate a change of one electron in the right dot.
In the upper left region the "horizontal" lines are not
present, even though the QPC can still detect changes in
the charge, as demonstrated by the presence of the "ver-
tical" lines. We conclude that in this region the left dot
contains zero electrons. Similarly, a disappearance of the
"vertical" lines occurs in the lower right region, showing
that here the right dot is empty. In the upper right region,
the absence of lines shows that here the double dot is
completely empty.

We are now able to count the absolute number of elec-
trons. Figure 2b shows a zoom-in of the few-electron
region. Starting from the "00" region, we can label all
regions in the honeycomb diagram, e.g. the label "21"
means two electrons in the left dot and one in the right.
Besides the dark lines, also short white lines are visi-
ble, signifying a positive peak in dIQPC/dVL. These white
lines correspond to a charge transition between the dots
while the total electron number remains the same. (The
positive sign of dIQPC/dVL can be understood if we note
that crossing the white lines by making VL a little more
positive means moving an electron from the right to the
left dot, which increases IQPC. Therefore the differen-
tial quantity dIQPC/dVL displays a positive peak.) The
QPC is thus sufficiently sensitive to detect inter-dot tran-
sitions.

Tunability Of The Double Dot Circuit

In measurements of transport through lateral double
quantum dots, the few-electron regime has never been
reached [12]. The problem is that the gates, used to de-
plete the dots, also strongly influence the tunnel barriers.
Reducing the electron number would always lead to the
Coulomb peaks becoming unmeasurably small, but not
necessarily due to an empty double dot. The QPC de-
tectors now permit us to compare charge and transport
measurements. Figure 3a shows IDOT versus VL and VPR,
with the dotted lines extracted from the measured charge
lines in Fig. 2b. In the bottom left region the gates are not
very negative, hence the tunnel barriers are quite open.

00

10

01

11

22
21

12

b

a

-1.1

-1.0

-0.9
0.0 -0.2 -0.4 -0.6

00

V
L

(V
)

VPR (V)

-1.02

-1.00

-0.98

-0.96

-0.15 -0.20 -0.25 -0.30

VPR (V)

V
L

(V
)

FIGURE 2. (a) Charge stability diagram ("honeycomb") of
the double quantum dot, measured with Q-R. A modulation
(0.3 mV at 17.77 Hz) is applied to gate L, and dIQPC/dVL
is measured with a lock-in amplifier and plotted in grayscale
versus VL and VPR. The bias voltages are: VSD2 = 100 µV and
VDOT = VSD1 = 0. The label "00" indicates the region where
the double dot is completely empty. (b) Zoom-in of Fig. 2a,
showing the honeycomb pattern for the first few electrons in the
double dot. The black labels indicate the number of electrons
in the left and right dot.

Here the resonant current at the charge transition points
is quite high (∼ 100 pA, dark gray), and also lines due to
cotunneling are visible [12]. Towards the top right corner
the gate voltages become more negative, thereby closing
off the barriers and reducing the current peaks (lighter
gray). The last Coulomb peaks (in the dashed square,
and in Fig. 3b) are faintly visible (∼ 1 pA). Apart from
a slight shift, the dotted lines nicely correspond to the
regions where a transport current is visible. We are thus
able to measure transport through a one-electron double
quantum dot.

Even in the few-electron regime, the double dot re-
mains fully tunable. By changing the voltage applied to
gate T , we can make the tunnel barriers that define the
double dot more transparent, leading to a larger current
through the device. We use this procedure to increase the
current at the last two triple points. For the gate voltages
used in Fig. 3b, the resonant current is very small (< 0.5
pA), and the triple points are faintly visible. By making
VT less negative, the resonant current becomes about 5
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FIGURE 3. (a) Transport through the double dot in the same
region as Fig. 2b. Plotted in logarithmic grayscale is IDOT ver-
sus VL and VPR, with VDOT = 100 µV and VSD1 = VSD2 = 0.
The dotted lines are extracted from Fig. 2b. Light color corre-
sponds to zero current and black corresponds to ∼ 100 pA. In-
side the dashed square, the last Coulomb peaks are visible (∼ 1
pA). (b)-(d) Close-up of the region inside the dashed square in
(a), showing the last two triple points before the double dot
is completely empty. Tuning the gate voltages increases the
current from < 0.5 pA (b) to 5 pA (c), and finally to 70 pA
(d).

pA (Fig. 3c). The cotunneling current is not visible, and
the two triple points are clearly separated. By changing
VT even more, the current at the last triple points can be
increased to ∼ 70 pA (Fig. 3d). For these settings, the
triple points have turned into lines, due to the increased
cotunneling current. This sequence demonstrates that we
can tune the double dot from being nearly isolated to be-
ing very transparent.

We can also control the inter-dot coupling, by chang-
ing the voltage applied to gate M. This is demonstrated
with a QPC charge measurement using sample 2. We
apply a square wave modulation of 3 mV at 235 Hz to
the rightmost plunger gate, PR, and measure dIQPC/dVPR

using a lock-in amplifier. Figure 4a shows the familiar
honeycomb diagram in the few-electron regime. All lines
indicating charge transitions are very straight, implying
that for the gate settings used, the tunnnel-coupling be-
tween the two dots is negligible compared to the ca-
pacitive coupling. This is the so-called "weak-coupling"
regime. (We note that the double dot as a whole is still
quite well-coupled to the leads, so that the total number
of electrons can change, as demonstrated by the regu-
lar shape of the honeycomb pattern[13].) By making VM

less negative, the tunnel barrier between the two dots is
made more transparent, and an "intermediate-coupling"
regime is reached (not shown). Here, most lines are still
straight, except for the most positive voltages, where
they are slightly bent. This signifies that the inter-dot
tunnel-coupling is comparable to the capacitive coupling.
If we make VM even less negative, we reach the strong-
coupling regime (Fig. 4b). In this case, all lines are very
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FIGURE 4. Controlling the inter-dot coupling with VM in
sample 2. dIQPC/dVPR is plotted in grayscale versus VL and VR.
A magnetic field of 6 Tesla is applied in the plane of the 2DEG.
(a) Weak-coupling regime, where all dark lines, indicating
charge transitions, are straight. The tunnel-coupling between
the two dots is negligible compared to the capacitive coupling.
(b) Strong-coupling regime, where VM is 0.17 V less negative
than in (a), such that all lines are very curved. This implies that
the tunnel-coupling is dominating over the capacitive coupling.

curved, implying that the tunnel-coupling is dominating
over the capacitive coupling. Thus the double dot be-
haves more like a single dot in this regime.

SIMULATIONS

Simulation Of The Charging Diagram

We use computer modeling to simulate the charging
of the quantum states in the laterally coupled quantum
dot (LCQD) and the corresponding electrostatic variation
in the QPC [7, 8]. For this purpose, we solve coupled
three-dimensional Kohn-Sham [14] and Poisson equa-
tions self-consistently to obtain the quantum states in the
LCQD region, while outside this region the charge den-
sity is determined by solving Poisson equation within
the Thomas-Fermi approximation [16, 7]. The above dif-
ferential equations are solved on a non-uniform three-
dimensional (3D) mesh using the finite element method
(FEM) with proper boundary conditions, described else-
where [15, 16]. We use a variation on the Slater formula
[17, 18] to determine the stable charge configuration in
the LCQD, so that charging occurs when

εLUO(1)−EF = EF − εLUO(0) (1)

where εLUO(α) is the eigenenergy of “the lowest unoc-
cupied orbital,” with occupancy α , and EF is the Fermi
energy. (This variation was justified in Ref. [16]).

Figure 5 shows the conduction band edge profiles in
the xy-plane at the 2DEG interface (contour plot, Fig.
5a) and in the z-direction (Fig. 5b) under the condition
VL = VR = VQPC−L = VQPC−R = VM = −0.585 V, VT =
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FIGURE 5. Conduction band edge profile in the LCQD-QPC
structure: (a) contour plot in the xy-plane at the 2DEG interface
(the dashed rectangle shows the location of the dots), (b) along
the z-direction at the centre of the right dot, (x,y) = (1300 Å,-
150 Å), with the inset showing the shape of the ground state
wavefunction (VPL = VPR = −0.15 V, zero electrons).

−0.9 V, VPL = VPR = −0.15 V and zero electrons in
the dots. The Fermi level is set at zero throughout the
device at the temperature T = 4 K. The LCQD region
and the QPC region with low equipotential-line density
are clearly visible in Fig. 5a. The outer energy barrier
for the LCQD is ∼ 110 meV whereas the energy barrier
between the dots is ∼ 9 meV. A large negative T gate bias
is used to prevent the wavefunctions from leaking into
the external reservoirs, which clearly defines the LCQD
region. Also, clearly visible are the QPC constrictions
in the potential at x ∼ ±4900 Å and y ∼ 0 Å. The
confinement along the z-direction is achieved by a quasi-
triangular shaped well shown in Fig. 5b, for which the
relaxation of the potential to zero-field is not shown at
the far end (substrate) of the device. Due to the strong
confinement in the triangular well, only the ground state
along the z-direction is occupied (the shape of the ground
state wavefunction along the z-direction is shown in the
inset in Fig. 5b).

Starting from an empty double dot, we detect the
single-electron charging events by monitoring the energy
of the dot as a function of the voltage on the two plunger
gates. By following different charging paths, and con-
necting the points of single-electron charging, we can
draw the "honeycomb" charging diagram (for an exten-
sive description see Ref. [7]). We find that the voltage
separation between the two triple points ∆VPR = 7.7 mV,
which is comparable to the experimental result∼ 7.4 mV.

Optimizing The Charge Sensitivity

Computer simulations provide an excellent tool to test
different designs of the quantum dot circuit, thus elim-
inating the need for time-consuming device fabrication
and extensive test measurements. Here, we use computer
simulations to find the sensitivity of the QPC conduc-
tance to single-electron charging in the double quantum
dot, for four different designs.

In Fig. 6a-d, we show the different QPC gate geome-
tries (dark dash lines in the upper panels) in a small re-
gion near the right QPC. In order to keep the symmetry
of the circuit, we change the left QPC gates accordingly
(not shown). Figure 6a shows the original design, while
in Fig. 6b, the tips of the QPC are replaced by flat ends
to form a rectangular-shaped channel. In both Fig. 6c and
d, the detector is designed to have a dent in the R-gate.
In Fig. 6d, the dent is placed 600 Å closer to the right dot
than in Fig. 6c. In these four designs, the nearest distance
between the R-gate and the QPC-R gate is maintained at
2000 Å, which implies that for design (d) the R-gate is
thinner in the dent while for design (c) it is thicker out-
side the dent. Equipotential-energy lines (gray solid lines
in Fig. 6a-d in the upper panels) are plotted under the
gates showing the different conduction channel geome-
tries caused by the different gate designs. The bias con-
ditions for the circuit (specified in the figure captions for
each case) are set at the (0,0) to (0,1) transition. Different
QPC biases are compensated for by changing VPR.

It is clearly seen that the conduction channels in de-
signs (b)-(d) are more squeezed compared to the channel
in design (a). In Fig. 6a and b the channels are straight,
while in Fig. 6c and d they are curved towards the right
dot. The lower panels in Fig. 6a-d show the potential
energy profiles along the x-direction (for the same x-
distance as the upper panels). The conduction channels
are seen to be increasingly confined from designs (a) to
(c).

To obtain the charge sensitivity, we take the jump at
the saddle point of the potential energy in the QPC con-
striction due to single-electron charging of the adjacent
dot, ∆EC, and compute the relative change in conduc-
tance G of the QPC, ∆G/G, at G = e2/h by

∆G
G

= − π
h̄ωy

∆EC, (2)

where h̄ωy is the characteristic energy for a y-direction
parabolic fitting of the potential energy near its saddle
point in the constriction of the QPC [19]. The character-
istic energy h̄ωy is obtained by fitting the potential energy
in the constriction of the QPC with an 11-point parabola
over the distance of the QPC gate (i.e., 1000 Å) along the
y-direction. We compute the absolute value of the right-
hand side of Eq. (2) within a wide experimental range of
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FIGURE 6. (a), (b), (c) and (d): top panels: contour plots of
the potential energy near the right QPC with the gate shape
superimposed by dashed lines for design (a), (b), (c) and (d),
respectively. Notice that equi-potentials are lower (higher) in
the channel (underneath the gates). Bottom panels: potential
energy profiles in the x-direction at maximum QPC constriction
(y = −150 Å). Dashed lines indicate the Fermi levels. The
bias conditions are, in design (a), VL = VR = VM = −0.585
V, VPR = −0.061 V; in design (b), VL = VR = VM = −0.57
V, VPR = −0.055 V; in design (c), VL = VR = VM = −0.55
V, VPR = −0.021 V; in design (d), VL = VR = VM = −0.62 V,
VPR =−0.008 V. Otherwise, VPL =−0.15 V, VT =−0.9 V, and
VQPC−L = VQPC−R = −0.8 V for all the designs.

QPC gate biases (−0.8 to −0.3 V), aware that the condi-
tion G = e2/h falls within this range [8].

We find that (1) for all the designs, ∆EC decreases
monotonically as VQPC−R increases, which is due to the
relaxation of the QPC confinement; (2) ∆EC increases
from design (a) to (d) at each QPC gate bias. Further-
more, ∆G/G is rather insensitive to VQPC for designs (a)
and (b) , while it decreases monotonically as VQPC is in-
creased for designs (c) and (d). We notice that the detec-
tor sensitivity of the original design (a) (∆G/G ≈ 2%) is
in good agreement with the experimental data [6]. The
minimum values of ∆G/G for designs (c) and (d) (3.67%
and 5.32%, respectively) are even larger than the maxi-
mum values for designs (a) and (b) (3.07% and 3.06%,
respectively) over the whole range of QPC gate biases.
Hence, we conclude that for a specific QPC gate bias that
achieves G = e2/h, designs (c) and (d) have larger de-
tector sensitivity than designs (a) and (b). We find from

the numerical values obtained that the improvement of
∆G/G falls in the range from min(d)−max(a)

max(a) = 73% to
max(d)−min(a)

min(a) = 308%, where min(a) and max(a) denote

the minimum and maximum values achieved by ∆G/G
for design (a) over the investigated voltage range and
similarly for design (d).
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