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We study, both theoretically and experimentally, driven Rabi oscillations of a single electron spin
coupled to a nuclear-spin bath. Because of the long correlation time of the bath, two unusual features are
observed in the oscillations. The decay follows a power law, and the oscillations are shifted in phase by a
universal value of ��=4. These properties are well understood from a theoretical expression that we
derive here in the static limit for the nuclear bath. This improved understanding of the coupled electron-
nuclear system is important for future experiments using the electron spin as a qubit.
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A quantum bit is engineered such that its coupling to the
disturbing environment is minimized. Understanding and
controlling this coupling is therefore a major subject in the
field of quantum information processing. It is not solely the
coupling strength but also the dynamics of the environment
that governs the quantum coherence. In particular, the limit
where these dynamics are slow compared to the evolution
of the quantum system is interesting. The well-known
Markovian Bloch equations that describe the dynamics of
a driven system, including the exponential decay of the
longitudinal and transverse magnetization [1], then lose
their validity. Such deviations from the exponential behav-
ior have been studied theoretically [2,3] and experimen-
tally, for instance in superconducting qubit systems [4].

An electron spin confined in the solid state is affected
predominantly by phonons via the spin-orbit interaction
[5–9], and by nuclear spins in the host material via the
hyperfine interaction. At low temperature, coupling to the
nuclear spins is the dominant decoherence source [10–17].
Although this strong coupling leads to an apparent deco-
herence time T�2 of the order of 20 ns when time averaged
over experimental runs, the decoherence time T2 strongly
depends on the dynamics in the nuclear-spin bath. This
typical nuclear-spin dynamics is very slow, because the
nuclear spins are only weakly coupled with each other and
the bath itself is coupled very weakly to its dissipative
environment (like phonons). This implies that here, the
Markovian Bloch equations are not valid.

Here we study the dynamics and decoherence of an
electron spin in a quantum dot that is coherently driven
via pulsed magnetic resonance, and is coupled to a nuclear-
spin bath with a long correlation time. We find experimen-
tally that, remarkably, the electron spin oscillates coher-
ently, even when the Rabi period is much longer than
T�2 � 10–20 ns. In addition, the characteristics of the
driven electron-spin dynamics are unusual. The decay of
the Rabi oscillations is not exponential but follows a power
law and a universal (parameter independent) phase shift
emerges. We compare these experimental results with a

theoretical expression, derived in the limit of a static
nuclear-spin bath.

We consider a double quantum dot with one electron in
each dot and a static external magnetic field in the z
direction, resulting in a Zeeman splitting �z � g�BBz.
The spin transitions are driven by a burst of a transverse
oscillating field along the x direction with amplitude Bac

and frequency !, which is generated by a current Is
through a microfabricated wire close to the double dot
[18]. The interaction between the electron spin and the
nuclear bath is described by the Fermi contact hyperfine
interaction ~S � ~h, where ~h is the field generated by the
nuclear spins at the position of the electron. For a large
but finite number of nuclear spins (N � 106 for lateral
GaAs dots) hz is Gaussian distributed (due to the central-
limit theorem) with mean h0 � �hz and variance �2 �

�hz � h0�
2 [10–12]. For a sufficiently large external mag-

netic field (�z � �), we may neglect the transverse terms
S? � h? of the hyperfine interaction that give rise to
electron-nuclear-spin flip-flops (see below). Furthermore,
if the singlet-triplet energy splitting J is much smaller than
both �z and g�BBac, we may treat the spin dynamics of the
electrons in each dot independently (valid for times less
than 1=J).

For each dot we thus have the following spin
Hamiltonian (@ � 1):

 H�t� �
1

2
��z 	 hz��z 	

b
2

cos�!t��x; (1)

where �i (with i � x, z) are the Pauli matrices and b �
g�BBac (taken to be equal in both dots). Here, hz is
considered as completely static during the electron-spin
time evolution. This is justified because the correlation
time of the fluctuations in the nuclear-spin system due to
the dipole-dipole and hyperfine-mediated interaction be-
tween the nuclear spins, which is predicted to be *

10–100 �s [10–12,19–23], is much larger than the time
scale for electron-spin dynamics considered here (up to
1 �s).
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In the experiment, the electron-spin state is detected in a
regime where electron transport through the double
quantum dot occurs via transitions from spin states with
one electron in each dot [denoted as (1,1)] to the singlet
state jS�0; 2�i with two electrons in the right dot. These
transitions, governed via the tunnel coupling tc by
the tunneling Hamiltonian Htc � tcjS�1; 1�ihS�0; 2�j 	
H:c:, are only possible for antiparallel spins, because
h""jHtc jS�0;2�i�h##jHtc jS�0;2�i�0, while h#"jHtc jS�0; 2�i,
h"#jHtc jS�0;2�i� 0. Therefore, the states with even spin
parity (parallel spins) block transport, while the states
with odd spin parity (antiparallel spins) allow for transport.
If the system is initialized to an even spin-parity state, the
oscillating transverse magnetic field (if on resonance) ro-
tates one (or both) of the two spins and thus lifts the
blockade [18]. Initializing to j"i in both dots (the case
with j#i gives the same result), we calculate the probability
for an odd spin parity Podd under time evolution for each of
the two spins governed by the Hamiltonian in Eq. (1).

Introducing the detuning from resonance �! �
�z 	 hz �!, the probability of finding spin-up for a single
value of hz in the rotating wave approximation (which is
valid for �b=�z�2 
 1) is given by
 

P";�!�t� �
1

2

�
1	

4�2
!

b2 	 4�2
!
	

b2

b2 	 4�2
!

� cos
�
t
2

��������������������
b2 	 4�2

!

q ��
: (2)

Assuming that ! � h0 	 �z, i.e., �! � hz � h0, we find
when averaging over the Gaussian distribution of hz values
(see [24])

 P"�t� �
1

2
	 C	

����������
b

8�2t

s
cos

�
b
2
t	

�
4

�
	O

�
1

t3=2

�
; (3)

for t� max�1� ; 1=b; b=2�2�, with C � 1
2�

�����
2�
p

b
8� �

exp� b
2

8�2�erfc� b
2
��
2
p
�
�. We can now calculate the probability

of finding an odd spin-parity state taking ! � h0 	 �z for
both dots and drawing the value of hz independently from a
distribution with width � in each dot:

 Podd�t� � P";L�t��1� P";R�t� 	 �1� P";L�t�P";R�t�

�
1

2
� 2C2 � C

f�t���
t
p �

g�t�
t
	O

�
1

t3=2

�
; (4)

 f�t� �

������
2b

�2

s
cos

�
bt
2
	
�
4

�
; (5)

 g�t� �
b

8�2

�
1	 cos

�
bt	

�
2

��
: (6)

This result is valid for times t * max�1=�; 1=b; b=2�2� �
20 ns for a 1.4 mT nuclear field (see below) and b � 2�
(accessible experimental regime). The 1=t term oscillates
with the double Rabi frequency which is the result of both

spins being rotated simultaneously (see also [18]). This
term only becomes important for b > �, because in that
case for both spins most of the nuclear-spin distribution is
within the Lorentzian line shape of the Rabi resonance.
The 1=

��
t
p

-term oscillates with the Rabi frequency and
originates from only one of the two spins being rotated
[18]. This term is important when b < �, i.e., when only a
small fraction of the nuclear-spin distribution is within the
line shape of the Rabi resonance.

We also give the expression for Podd�t� for the case
where only one of the two spins is on resonance (�z 	 h0 �
! � 0), while the other is far off resonance (j�z 	 h0 �
!j � �). In this case the spin in one dot always remains
up while the spin in the other dot rotates. This leads to

 P�1�odd�t� � 1� P"�t� �
1

2
� C�

f�t�

4
��
t
p 	O

�
1

t3=2

�
; (7)

with the same range of validity as in Eq. (4). We see that
the 1=t term, which oscillates with frequency b, is not
present in this case.

The expressions for Podd�t� [Eqs. (4) and (7)] reveal two
interesting features: the power-law decay and a universal
phase shift of �=4 [see Eq. (5)] in the oscillations which is
independent of all parameters. These features can both
only appear if the nuclear field hz is static during a time
much longer than the Rabi period. This is crucial because
only then the driven spin coherence for one fixed value of
hz is fully preserved. Because different values of hz give
different oscillation frequencies, the decay is due to aver-
aging over the distribution in hz.

The phase shift is closely related to the power-law decay
because it also finds its origin in the off-resonant contri-
butions. These contributions have a higher Rabi frequency
and shift the average oscillation in phase. This universal
phase shift therefore also characterizes the spin decay,
together with the power law. Interestingly, the specific
shape of the distribution in hz (as long as it is peaked
around the resonance) is not crucial for the appearance of
both the power-law decay and the phase shift [24]. The
values of the decay power and the phase shift are deter-
mined by the dependence of the oscillation frequency on hz
(in this case

��������������������
b2 	 4�2

!

p
).

A power-law decay has previously been found theoreti-
cally in [10,12,25,26] and both a power-law decay (1=t3=2)
and a universal phase shift also appear in double dot
correlation functions [13,21]. In [17] a singlet-triplet cor-
relation function was measured, but the amplitude of the
oscillations was too small for the phase shift and the
power-law decay to be determined. Here, we consider
driven Rabi oscillations of a single electron spin with a
power-law decay of 1=

��
t
p

that is already valid after a short
time 1=�� 20 ns. Therefore, the amplitude of the driven
spin oscillations is still high when the power-law behavior
sets in, even for small driving fields (b < 2�), which are
experimentally easier to achieve. The power-law decay and
the phase shift thus should be observable in the experiment.
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We now discuss the observation of the power-law decay
in the experimental data of which a selection is shown in
Fig. 1. The data are obtained with the same device and
under the same experimental conditions as in [18]. A fit is
carried out to the observed oscillations for four different
driving fields Bac (Fig. 1), with three different fit functions:
the theoretical expressions [Eqs. (4) and (7) with b and a
constant scaling factor as fit parameters] and an exponen-
tially decaying cosine. The width of the nuclear distribu-
tion � � g�B�1:4 mT� is obtained from a fit of the steady-
state value 1

2� 2C2 of Podd�t� to a data set obtained at t �
950 ns [Fig. 2(a)].

For the range Bac � 1:9 mT, we find good agreement
with the model that predicts a power-lay decay of 1=

��
t
p

[Eq. (4); h0 equal for both dots], while the fit with an
exponentially decaying cosine is poor (dotted lines in
Fig. 1). The power of the decay is independently verified
by means of a fit to the data with a1 	 a2 cos�2�t=a3 	
�=4�=td where, besides a1;2;3, the power d of the time t is a
fit parameter as well. We find values of d� 0:6 [Fig. 2(b)],
close to the predicted 1=

��
t
p

dependence.
We see much better correspondence of the data with

Eq. (4) than with Eq. (7), from which we can conclude that
the mean of the Gaussian distribution h0 is comparable for
both dots (in equilibrium, we expect h0 � 0 in both dots).

There might, however, still be a small difference in h0

between the two dots, which we cannot determine quanti-
tatively because the two models describe only two limiting
cases. If present, such a difference in h0 could help explain
the small deviation between data and model at the first
oscillation for Bac � 2:5 mT. It could originate from
asymmetric feedback of the electron spins on the respec-
tive nuclear-spin baths, e.g., due to unequal dot sizes,
leading to different hyperfine coupling constants.

Another observation is that for small driving fields,
Bac < 1:9 mT, we see that the damping is faster than
predicted. Possible explanations for this effect are correc-
tions due to electron-nuclear flip-flops (transverse terms in
the hyperfine Hamiltonian) or electric-field fluctuations.
Electron-nuclear flip-flops may become relevant on a
time scale ��z=�2 � 1 �s in this experiment. Electric-
field fluctuations can couple to spin states via the spin-orbit
interaction [27] or a finite electric-field dependent ex-
change coupling.

We continue the discussion with the experimental ob-
servation of the second theoretically predicted prominent
feature of the Rabi oscillations, i.e., a phase shift of �=4 in
the oscillations, which is independent of all parameters.
The value of � can be extracted most accurately from
the oscillations measured for a wide range and small steps
of Bac, like the data shown in Fig. 3(a). That is because
the Rabi period TRabi � 2�=g�B�

1
2Bac� � 2�=g�B�

1
2KIs�

contains only one unknown parameter K (current to oscil-
lating field amplitude Bac conversion factor, in units of
T=A) which is independent of the current through the
wire Is that generates Bac [18]. The presence of a phase
shift is visible in Fig. 3(a), where the green and blue lines
correspond, respectively, to the maxima of a cosine with
and without a phase shift of �=4. The green lines match
very well the yellow bands representing high data values.
In contrast, the blue lines are located on the right side of the
yellow bands for small burst times and more and more on
the left side of the bands for increasing burst times. Thus, a
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FIG. 1 (color online). Rabi oscillations for four different driv-
ing fields Bac [Bz � 55 mT, g � 0:355 and � � g�B�1:4 mT�].
The gray circles represent the experimentally measured dot
current (averaged over 15 s for each value of t), which reflects
the probability to find an odd spin-parity state after the rf burst
that generates Bac. The dotted, solid, and dashed lines represent
the best fit to the data of an exponentially decaying cosine
function and the derived analytical expressions for Podd�t� and
P�1�odd�t� [Eqs. (4) and (7)], respectively. For clarity, the dashed
line is shown only for the top two panels. The fit was carried out
for the range 60 to 900 ns and the displayed values for Bac were
obtained from the fit with Podd�t� [Eq. (4)]. We fit the data with
an exponentially decaying cosine with a tunable phase shift that
is zero at t � 0: a1e

�t=a2 �cos��� � cos�2�t=a3 	�� 	 a4�1�
e�t=a2 �. The last term was added such that the saturation value is
a fit parameter as well. We note that the fit is best for � � �=4,
as discussed in the text.
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FIG. 2. (a) Dot current after an rf burst of 950 ns as a function
of Bac, approximately representing the steady-state value. The
solid curve is the best fit with a1�

1
2� 2C2�: the steady-state

expression of Eq. (4) with a1 and � as fit parameters. We find,
for the 95% confidence interval, � � g�B�1:0–1:7 mT�.
(b) Decay power obtained from the best fit of the data (partially
shown in Fig. 1) with the expression a1 	 a2 cos�2�t=a3 	
�=4�=td, where a1;2;3 and d are fit parameters.
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cosine without a phase shift does not match with the
observed Rabi oscillations.

In order to determine � quantitatively, we perform a
single two-dimensional fit of the complete data set in
Fig. 3(a) with Podd�t� [Eq. (4)], excluding the 1=t term
(see [24]). The fit range is t � 100–900 ns, such that the
contribution from the 1=t term of Eq. (4) can be neglected.
For the 95% confidence interval we find � � �0:23�
0:01��, close to the theoretical value. The relation between
� and Bac is visible in Fig. 3(b), where we find no signifi-
cant dependence of � as a function of Bac, although the
accuracy decreases for smaller Bac (values obtained from
fits to single traces, see caption). We have not compensated
for the effects of the finite rise time (< 2 ns) of the bursts,
which leads to a small negative phase shift, on top of the
expected positive �=4 shift.

To conclude, we have experimentally observed a power-
law decay and universal phase shift of driven single
electron-spin oscillations. These features are theoretically
understood by taking into account the coupling of the spin
to the nuclear-spin bath, which is static on the time scale of
the electron-spin evolution time. These reported results
affect the prospect of making electron-spin based qubits
in GaAs quantum dots. Namely, the slow power-law decay
allows spin manipulation with smaller driving fields,
and knowledge of the phase shift is relevant for determi-
nation of the correct pulse lengths. Furthermore, nonexpo-
nential coherence decay will affect error-correction

schemes which usually account for exponential decays.
For future investigation, it remains interesting to obtain
more information about the nonstatic contributions of the
nuclear bath or other possible decoherence mechanisms.
This requires measuring the driven oscillations at larger
external fields, with larger driving powers and longer evo-
lution times than accessible in this work.
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FIG. 3 (color). (a) The dot current (represented in color scale)
is displayed over a wide range of Bac (the sweep axis) and burst
durations. The green and blue lines correspond, respectively, to
the maxima of a cosine with and without a phase shift of �=4.
The current-to-field conversion factor K is fitted for both cases
separately (K � 0:568 mT=mA and K � 0:60 mT=mA for, re-
spectively, with and without phase shift; the fit range is t �
60–500 ns and Is � 3:6–6:3 mA). (b) Phase shift for a wide
range of Bac, displayed as a function of stripline current Is.
Values obtained from a fit of each trace of the data in (a) (varying
burst time, constant Bac) to a damped cosine a1 �

a2 cos�12KIsg�Bt	 a3��=
��
t
p

, where a1;2;3 are fit parameters
and K � 0:568 mT=mA. Is is a known value in the experiment,
extracted from the applied rf power. The gray dashed lines
represent the 95% confidence interval.
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