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Two coupled quantum dots with a continuous density of states
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We have studied tunnelling between two quantum dots with a continuous density of states.
The Coulomb blockade oscillations show a double peak structure when the transmission
between the dots is below unity. This peak-splitting is described in terms of the electrostatic
interaction between the two dots using a classical capacitance description. This model ne-
glects charge fluctuations due to tunnel events between the dots. We compare the temperature
dependence of the split-peaks with a recent theory that does include charge fluctuations.
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1. Introduction

Single electron charging effects have been studied in detail in double metal tunnel junctions [1] and in
semi-conductor quantum dots [2]. Transport through these nanostructures can be regulated by the Coulomb
blockade of tunnelling. This leads to periodic Coulomb blockade oscillations as a function of the island
potential. Multi-island structures have been studied by Pothieret al. [3] and Geerligset al. [4] in the metallic
regime, where the islands have a continuous density of states. It was found [4] that the Coulomb blockade
oscillations split-up into double peaks for double island devices and into triple peaks for triple island devices.
However, in these metal systems it is not possible to tune the tunnel barrier between the islands and to study
the effect of tunnelling on the inter-island coupling.

More recently, multi-island structures were investigated using semi-conductor quantum dots. These studies
showed a scaling of the charging energy with the area of the dot [5], a double periodicity due to the two
charging energies of both dots [6], a stochastic suppression of the current through the double dot [7, 8] and
an interaction between the dots [9–12]. The advantage of using these types of structures is the presence of
tuneable tunnel barriers. Furthermore, small quantum dots can have a discrete energy spectrum [13], which
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Fig. 1. SEM micrograph of the double dot geometry. Each dot has a lithographic size of 600× 600 nm2. This gate geometry allows a
flexible control of the conductance of the three tunnel barriers 1-F, 2-F and 3-F. The coupling between the two dots can be tuned with
voltage on gate 2.

allows the study of band structure effects in multi-dot structures with strongly coupled dots [14–17]. In the
limit of weak coupling between the dots, sharp resonances were observed in the tunnel current when the
energy of the two discrete states lined up [18, 19].

In this paper, we discuss experiments on a double quantum dot, where we can neglect the discrete energy
spectrum of the dots. We study in detail the transition from two strongly coupled dots to two weakly coupled
dots. As the coupling between the dots is increased, we observe a transition from equally spaced Coulomb
oscillations to Coulomb oscillations with a double peak structure. A first understanding of this effect can
be obtained in terms of a changing capacitance between the dots. However, a description with geometric
capacitances in the strong tunnelling regime neglects the important role of charge fluctuations. We compare
the temperature dependence of the conductance oscillations with a recent theory that includes quantum
fluctuations due to inter-dot tunnelling [20, 21].

2. Device description and experiments

The double dot is defined by metal gates on top of a GaAs/AlGaAs heterostructure with a two-dimensional
electron gas (2DEG) 100 nm below the surface. The ungated 2DEG has a mobility of 2.3× 106 cm2 Vs−1

and an electron density of 1.9× 1015 m−2 at 4.2 K. A scanning-electron micrograph of the gate geometry
is shown in Fig. 1. The lithographic size of each dot is 600× 600(nm)2. Applying negative voltages to the
six gates depletes the electron gas underneath them, and forms two quantum dots in the 2DEG. Current can
flow from the large electron reservoir on the left via the three tunnel barriers induced by the gate pairs 1-F,
2-F and 3-F to the reservoir on the right. The coupling between the dots can be changed with the voltage on
gate 2. The split-gate geometry allows us to characterize the individual dots and compare their properties to
those of the double dot. Measurements at finite source–drain voltage were used to determine the charging
energyEA andEB of the single dots(EA = EB = 0.4 meV). We did not observe any signatures of discrete
energy states which indicates that the separation of the discrete states is small compared to temperature.

Figure 2B shows the conductance through the double dot versus the gate voltageVg2 using a d.c.-source–
drain voltage of 30µV. The conductance of QPC1 and QPC3 is fixed at a value well below 2e2/h. The data
shows a transition of periodic oscillations into oscillations with a double peak structure. The double peaks are
separated in gate voltageVg2 by12 and the groups of double peaks by11. The black dots in Fig. 2C denote
the peak spacing1Vg2 of the oscillations in this trace. AroundVg2 = −370 mV, the peak spacing is roughly
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Fig. 2. (A) Current through dot A as a function ofVg2 (B) Current through the double dot versusVg2. (C) The black dots denote the
peak-spacing of the oscillations in (B). (D) Calculated inter-dot capacitanceCAB from the data of (C) as a function of the gate voltageVg2.
(E) The conductance of QPC2 versusVg2. We have shifted this trace by 60 mV to account for the electrostatic influence of the other gates.

constant(11 = 12). Upon decreasing the gate voltageVg2, the peak spacing starts to show two different
periodicities:12 decreases, while11 increases. Similar features were observed by Waughet al. [9].

Figures 2A and 2B show a comparison between the conductance through a single dot (dot A) and the
conductance through the double dot as a function ofVg2. The conductance through the single dot shows
equidistant Coulomb oscillations. AroundVg2 = −380 mV, the period of the Coulomb oscillations in the
single dot is two times larger than the period11 = 12 of the Coulomb oscillations in the double dot. As the
gate voltage is decreased, each peak in the current through the single dot still corresponds to two peaks in the
double dot. However, the peak spacing1Vg2 of the double dot oscillations alternates, whereas the oscillations
of the single dot remain periodic. Note that the peak spacing1Vg2 in Fig. 2C starts to oscillate in the gate
voltage region where the Coulomb oscillations in the single dot appears (Vg2 ≈ −360 mV in Fig. 2A). Around
this gate voltage the conductance of QPC2 drops below 2e2/h. This implies that the formation of the double
peak structure in Fig. 2B starts when particle exchange between the dots occurs via tunnelling.

3. Electrostatic energy of a double quantum dot

The observed splitting of the conductance peaks in the double dot can be understood in terms of the
electrostatic interactions between the dots. The total electrostatic energyU (NA, NB) of a double dot withNA
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electrons in dot A andNB electrons in dot B is given by [8]:

U (NA, NB) = 1

2
N2

AEA + 1

2
N2

B EB + NANB EAB + f (Vg2). (1)

This formula shows that the energy of the double dot can be described with the charging energyEA andEB

of two independent dots with an additional interaction termEAB. The gate voltage dependencef (Vg2), and
the charging energies can be expressed in terms of capacitances between the dots and their surroundings.

EA = e2 CB + CAB

CACB + CAB(CA + CB)
, EB = e2 CA + CAB

CACB + CAB(CA + CB)
(2)

EAB = e2 CAB

CACB + CAB(CA + CB)
(3)

f (Vg) = eCg2Vg2

CACB + CAB(CA + CB)
[NA(CB + 2CAB)+ NB(CA + 2CAB)]. (4)

HereCA(CB) is the total capacitance of dot A (dot B) due to the gates and the reservoirs andCAB is the
inter-dot capacitance.

WhenCAB is much larger than all other capacitances, the inter-dot capacitance acts as a ‘short’. In this
strongly coupled limit, eqn (1) reduces to:

U (NA, NB) = e2(NA + NB)
2

2(CA + CB)
+ e(NA + NB)

2Cg2

CA + CB
Vg2 (5)

i.e. the total electrostatic energy is the sum of the charging energy of a single dot containing(NA + NB)

electrons. In this regime, dot A and B have the same electro-chemical potential (ECP) and effectively form
one ‘large dot’ (Vg2 > −400 mV). The capacitance between this large dot and gate 2 is therefore two times
larger than the capacitanceCg2. This corresponds to eqn (5), which describes a single dot with a capacitance
(CA+CB) and a gate capacitance of 2Cg2. This is consistent with the experimental observations. The period of
the Coulomb oscillations in the double dot is half of the period observed in the single dot (see Fig. 2A and B).

WhenCAB is smaller than all other capacitances(CAB→ 0), eqn (1) reduces to:

U (NA, NB) = (eNA)
2

2CA
+ eNA

Cg2

CA
Vg2+ (eNB)

2

2CB
+ eNB

Cg2

CB
Vg2 (6)

i.e. the total electrostatic energy is the sum of the charging energy of two separate dots. This limit corresponds
to the left-hand side of Fig. 2B, where the splitting has almost disappeared and the period of the oscillations
is the same as in the single dot.

In the intermediate regime, whenCAB is of the same order as the other capacitances, charging one of
the dots also affects the energy of the other dot. Adding one electron to dot A increases the ECPµA of
dot A by EA andµB by the interaction energyEAB. Similarly, adding one electron to dot B increasesµB

by EB andµA with the interaction energyEAB. This gives rise to two transport mechanisms through the
double dot [3]:(NA, NB) → (NA, NB − 1) → (NA − 1, NB) → (NA, NB) → · · · and(NA − 1, NB) →
(NA − 1NB − 1) → (NA, NB − 1) → (NA − 1, NB) → · · ·. Each mechanism corresponds to one of the
maxima of a split-peak in Fig. 2B. Each double peak corresponds to removing two electrons from the double
dot (one electron from each dot). The splitting of the peaks(12) is proportional to the electrostatic interaction
EAB between the dots [3].

An estimation ofEAB can be made by considering the change inµA andµB as a function ofVg2. Using
eqn (1) andCA = CB = C gives:

1µA = 1µB ∝ e
Cg2

C
1Vg2. (7)

UsingCg2 = 3×10−17F, obtained from the period of the Coulomb oscillations andC = 40×10−17F obtained
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from the charging energy of the single dot, gives an estimate for the interaction energy:EAB = 150µeV
aroundVg2 = −420 mV, and decreases to 7µeV aroundVg2 = −460 mV. This shows that the electrostatic
interaction between the dots decreases when the coupling between the dots decreases. A simple interpretation
of this effect is that tuning the gate voltageVg2 changes the height and the shape of the tunnel barrier between
the dots. For decreasing gate voltage on the QPC 2, the distance between the two dots increases. This not only
changes the transparency of the tunnel barrier, but also the capacitanceCAB between the dots.

To compare the coupling of the two dots to the inter-dot capacitanceCAB, we have plotted the conductance
of QPC2 andCAB versus the gate voltage on gate 2 in Fig. 2D and E. Using eqns (3) and (7), we have
calculated the inter-dot capacitanceCAB from the peak spacings12 in Fig. 2C. Figure 2D shows that the
inter-dot capacitanceCAB diverges when the transmission of the barrier approaches unity. Note that despite
this divergence, the total electrostatic energy of the double dot remains finite. This can be seen from the peak
spacings:12 and11 both change in Fig. 2B as a function of gate voltage, the sum(12 +11), however, is
roughly constant (see Fig. 2C). This is in agreement with eqns 2 and 3. WhereasEAB, EA andEB change
as a function ofCAB, their sum is constant:(EAB + EB) = (EAB + EA) = e2/C ∝ (12 +11), assuming
again thatCA = CB = C.

4. Temperature dependence of the peak amplitude

The above experiments are discussed in terms of a capacitance model, which neglects quantum fluctuations
of the charge on the two dots. This assumption is unjustified when the inter-dot conductance approaches
2e2/h. The average number of electrons on each dot is then no longer quantized because the wave functions
leak from one dot to the other. Recently, it was pointed out that tunnel processes between the dots can also
cause a splitting of the conductance peaks [20, 21]. These theoretical works consider a double dot where the
total charge(NA+NB) cannot fluctuate, i.e. when the two barriers connecting the double dot to the reservoirs
have a transmission well below unity. However, when the transmissionbetweenthe dots approaches unity,
the difference in the charge on the two dotsNA − NB starts to fluctuate. This reduces the total energy of the
double dot and splits the conductance peaks [20, 21]. In this model, the splitting decreases when there are
less quantum fluctuations, i.e. when the transmission between the two dots decreases, in agreement with our
measurements.

Matveevet al. [20] predict a distinct temperature dependence of the maxima of the conductance peaks.
In the weak coupling regime, the peak maximaImax should be suppressed asImax ∼ Tγ with an exponent
γ = 5/4 for identical dots. The suppression of the current is caused by a vanishing overlap between the two
many-body ground states, before and after tunnelling, as the temperature is lowered [20].

We verified these predictions using a second sample of identical design. Figure 3A shows the current
through this double dot as a function of the voltage on gate 2 using a source drain voltage of 15µV. The
measurement is performed at the base temperature of a dilution refrigerator (10 mK). The temperature of the
electron gas, however, is typically around 100 mK as obtained from the line shape of the Coulomb oscillations
in a single dot. Similar to Fig. 2B, a clear transition occurs from equally spaced peaks on the right-hand
side to oscillations with a double peak structure aroundVg2 = −325 mV. On the left-hand side, in the weak
coupling limit, the peaks become equally spaced, but now with a twice as large period as the oscillations on
the right-hand side.

The maximaImax of six different peaks versus temperature are plotted in Fig. 3B on a double logarithmic
scale. The peaks, denoted by 1 and 2 are in the regime where the two dots form effectively one large dot.
Peak 3 and 4 are in the strong coupling regime, while peak 5 and 6 are measured in the weak coupling regime
(see Fig. 3A). The two solid lines show a fit to the data points in the temperature range 100–750 mK. In
agreement with theory we observe a power law for peak 3 and 4. The value of the exponent differs only
slightly from the expected value ofγ = 5/4 for symmetrical dots. We findγ = 1.2 for peak 3 andγ = 0.8
for peak 4.
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Fig. 3. (A) Conductance through the double dot as a function of the voltage on gate 2. (B) Temperature dependence of the peak maxima
Gmax in (A) denoted by 1 to 6.

A comparison between the six curves shows that the peak 1, 2 and 5, 6 do not exhibit a power law conforming
to the orthodox Coulomb blockade theory.Imaxfor peak 5 and 6 (weak coupling regime) stays roughly constant
for low temperatures and starts to increase aroundT = 300 mK. Similar features are seen in peak 1 and 2,
where the double dot can be considered as one large dot. The distinct difference between those four peaks
and the temperature dependence of the peaks in the strong coupling limit provides evidence that the tunnel
mechanism proposed in Ref [20] describes the physics in the correct way.

5. Conclusions and discussion

We have shown that increasing the barrier between two quantum dots results in a transition of equally spaced
oscillations to oscillations with a double peak structure. The transition occurs when the barrier conductance is
2e2/h and the discrete character of the electron charge becomes important for moving charge between the dots.
This effect can be described in terms of the electrostatic interactions between the dots using a variable inter-dot
capacitance. As the barrier between the dots is decreased, the inter-dot capacitance increases and when the
transmission probability between the dots approaches unity, the inter-dot capacitance goes to infinity. This
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describes the physics of one ‘large dot’. However, in this regime quantum fluctuations of the charge become
important. A model which uses only geometric capacitances is then an oversimplification. Recently, these
issues were considered theoretically for a single dot [22, 23]. The case of a double dot was discussed in
Refs [20, 21]. Matveevet al. [20] predicted a power law for the peak maxima in the weakly coupled regime
as a function of temperature. This is in agreement with our experiments. The exponent of the power law
differs slightly from the theoretical prediction. An asymmetry in the two dots may be responsible for this
deviation [20]. In addition to this effect, there can also be a deviation from the model due to a finite geometric
inter-dot capacitance.
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