
Analysis of images
In addition to the finite resolution, the camera system adds artefacts to the images owing
to optical interference effects of the coherent illumination light and electronic crosstalk
during readout of the CCD chip. In our case, the former results in a pattern of vertical
stripes and the latter mainly creates a periodic noise with awavelength of two pixels. As the
phase and amplitude of both periodic distortions are not constant, they can not be
cancelled by the normalization procedures and appear as periodic fluctuation in the noise
correlation plot. Images with high amplitude of such fluctuations (visible outside the atom
cloud) are removed from further analysis. The electronic noise is addressed after the
determination of the correlation function, by convolving it with a horizontal three-pixel-
wide gaussian mask for smoothing.

The correlation function as defined in equation (1) is obtained from a set of images as
follows: from each image the autocorrelation function (ACF) is calculated by Fourier-
transforming it, taking the absolute square to obtain the power spectral density and Fourier-
transforming it back. Averaging the ACF of all images yields the numerator of equation (1),
whereas the denominator is obtained by calculating the ACF of the average of all images.

Theoretical model
The origin of the correlation peaks can be understood as follows. Calculating the ACF
determines the expectation value of the operator n̂ðx1; tÞ n̂ðx2; tÞh i ¼

âþðx1; tÞ âðx1; tÞ âþðx2; tÞ âðx2; tÞh i at time t, with x1 ¼ x2 1
2d; x2 ¼ xþ 1

2d. The
operators â(x,t) at position x and time t after release relate to the on-site operators âðr jÞ for
the lattice sites j at positions rj as

âðx; tÞ ¼
j

X
wðx2 r j; tÞe

iðm=2�htÞðx2r j Þ
2

âðr jÞ

where w is the expanding wavefunction originally localized to the Wannier function at the
site. For the product of Fock states representing the Mott insulator with site occupation n i

at site i, one finds

âþðrkÞ âþðrmÞ âðr lÞ âðrnÞ
� �

¼ nk nm dkldmn þ nk nm dkn dlm ð4Þ

where the delta-term introduced through the normal ordering of the operators has been
omitted. In the correlation function C, the first term in equation (4) will create a constant
offset of 1 for large atom number N, whereas the second term introduces a spatial
dependence in the correlations, leading to:

C3DðdÞ ¼ Cðx1 2 x2Þ ¼ 1þ
1

N2
k;l

X
eiðm=�htÞðx 12x 2Þ�ðr k2r l Þnknl ð5Þ

Throughout the discussion, constant offsets of order 1/N are neglected compared to 1. For
a regular one-dimensional lattice with unity filling and spacing a lat, the sum can then be
simplified to 1+{[sin2(pNd/l)]/[N2sin2(pd/l)]}, with d ¼ x2 2 x1 and l ¼ ht/(ma lat),
analogous to the optical interference created by a regular grating. In the limit of large N,
this term corresponds to a series of peaks of height 1 and width l/N and converges to:

1þ
1

N

X1
j¼21

dðd=l2 jÞ

For a regular three-dimensional system the structure term converges to:

C3DðdÞ ¼ 1þ
1

N j

X
dððd2 p j

t

m
Þ=lÞ

where pj are the reciprocal three-dimensional lattice momenta. Because the imaging
system registers only column densities and has a finite resolution, the operators n̂(x1,2)
both have to be convolved with the inverse point spread function (approximated as a
gaussian of r.m.s. width j) and integrated along the imaging axis before being evaluated.
For unity filling this yields a smoothed two-dimensional correlation function:

CðdÞ ¼ 1þ
1

4pN

l

j

� �2

j

X
e2{½d2p j t=m�2=4j2 }

The heights of the peaks at the reciprocal lattice momenta therefore scale as N21t2 for this
simple homogeneous case. As indicated in the text, the N21 scaling is modified to N20.64

for our harmonically trapped system by the appearance ofMott domains with filling factor
larger than one for higher atom numbers. The prediction for the exponent has been
obtained by numerically evaluating the sum in equation (5) using a model distribution of
atoms in the lattice sites confined by a global parabolic potential. This distribution is
predicted assuming the system can be described in the strongly interacting limit30 with a
local density approximation.
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Progress in the fabrication of nanometre-scale electronic devices
is opening new opportunities to uncover deeper aspects of the
Kondo effect1—a characteristic phenomenon in the physics of
strongly correlated electrons. Artificial single-impurity Kondo
systems have been realized in various nanostructures, including
semiconductor quantum dots2–4, carbon nanotubes5,6 and indi-
vidual molecules7,8. The Kondo effect is usually regarded as a
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spin-related phenomenon, namely the coherent exchange of the
spin between a localized state and a Fermi sea of delocalized
electrons. In principle, however, the role of the spin could be
replaced by other degrees of freedom, such as an orbital quantum
number9,10. Here we show that the unique electronic structure of
carbon nanotubes enables the observation of a purely orbital
Kondo effect. We use a magnetic field to tune spin-polarized
states into orbital degeneracy and conclude that the orbital
quantum number is conserved during tunnelling. When orbital
and spin degeneracies are present simultaneously, we observe a
strongly enhanced Kondo effect, with a multiple splitting of the
Kondo resonance at finite field and predicted to obey a so-called
SU(4) symmetry.

The simplest Kondo system consists of a localized, spin-12 electron
coupled to a Fermi sea by means of a Heisenberg-like exchange
interaction1. This simple system can be realized with a quantum dot
(QD) device2–4, which is a small electronic island connected to
metallic leads via two tunnel barriers (see Fig. 1a). Below a
characteristic temperature TK, the so-called Kondo temperature, a
many-body singlet state is formed between the QD spin and the
surrounding conduction electrons (Fig. 1a). This state adds a
resonant level at the Fermi energy of the electrodes, enabling the
tunnelling of electrons across the QD. Such a Kondo resonance can
lead to a strong enhancement of the conductance, overcoming the
Coulomb blockade effect2–4. In principle, a Kondo effect might also
occur in the absence of spin if another quantum number, for
example an orbital degree of freedom, gives rise to a degeneracy
(Fig. 1b). In this case, Kondo correlations lead to the screening of the
local orbital ‘polarization’, and an orbital singlet is formed through a
combination of orbital states. In the presence of both spin and
orbital degeneracy, quantum fluctuations lead to a strong mixing of
these two degrees of freedom (Fig. 1c). This increased degeneracy
yields an enhancement of TK (ref. 11). In the low-temperature limit,
this system is described by a Hamiltonian obeying SU(4) symmetry,
which implies that the spin and charge degrees of freedom are
fully entangled and the state of the electron is represented by a four-
component ‘hyperspin’12–15.

An orbital degeneracy is naturally expected in the electronic
structure of carbon nanotubes16 (CNTs). This degeneracy can
intuitively be viewed to originate from the two equivalent ways in
which electrons can circle around the graphene cylinder, namely
clockwise and anticlockwise17. The rotational motion confers an
orbital magnetic moment on the electrons. Consequently, the
orbital degeneracy can be split by a magnetic field, B, parallel to
the nanotube axis. (Experimental evidence for this effect, originally
predicted by Ajiki and Ando18, has recently been reported17,19–21.)
We label the orbital states of a CNTQD as jþl and j2l according to
the sign of the energy shift that they experience under an applied
B. Size quantization due to the finite CNT length results in two sets
of orbital levels, Eþ

(n) and E2
(n), where n ¼ 1,2,3,… is the quantiza-

tion number. Eþ
(n) ¼ E2

(n) at B ¼ 0 (assuming no orbital mixing),
resulting in a fourfold degeneracy when including spin. The orbital
and spin degeneracies are simultaneously lifted by a parallel B
(Fig. 1d). The use of B permits the tuning of new degeneracies in
connection with the crossing between levels from different shells.
Here we are particularly interested in the crossing between states
with the same spin polarization, of the type indicated by the yellow
rectangle in Fig. 1d. We show below that the twofold orbital
degeneracy originating from such a crossing gives rise to a purely
orbital Kondo effect. We then consider the case of concomitant spin
and orbital degeneracy at B ¼ 0 (green rectangle in Fig. 1d) and
present evidence for an SU(4) Kondo effect.

In a measurement of the linear conductance, G, as a function of
gate voltage, VG, the fourfold shell structure leads to consecutive
groups of four closely spacedCoulomb blockade oscillations6,22. The
B-evolution of such oscillations is shown in Fig. 2a for a CNT QD
device (described in the inset to Fig. 2a and in the figure legend) in a

VG region encompassing two adjacent shells. Coulomb peaks
(highlighted by green lines) appear as lines running from bottom
to top and denote the sequential addition of electrons to the QD; the
electron number increases from left to right. The observed pattern is
explained in detail on the basis of the single-particle spectrum in
Fig. 1d and taking into account the Coulomb interaction between
electrons (see Supplementary Information).
The Coulomb peaks move to the left or right when increasing B,

 

Figure 1 Spin, orbital and SU(4) Kondo effect in a quantum dot (QD) with an odd number

of electrons. The left and right panels in a–c represent initial and final ground states,

respectively. a, Schematic illustration of a spin-flip co-tunnelling process connecting the

two states spin up, j " l, and down, j # l, from a single orbital state. The intermediate

virtual state is shown in the central diagram. This co-tunnelling event is one of many

higher-order processes that add up coherently, resulting in the screening of the local spin.

b, Co-tunnelling process for spinless electrons for two degenerate orbital states, labelled

jþl and j2l. The depicted process flips the orbital quantum number from jþl to j2l
and vice versa. The coherent superposition of orbital-flip processes leads to the screening

of the local orbital quantum number. c, QD with two spin-degenerate orbitals leading to an

overall fourfold degeneracy. Spin and/or orbital states can flip by one-step co-tunnelling

processes, indicated by black arrows in the central diagram; the orange arrow refers to

the co-tunnelling event connecting the two states depicted in the green diagrams. These

processes lead to the entanglement of spin and orbital states, resulting in an enhanced

SU(4) Kondo effect. d, Qualitative single-particle energy spectrum of a CNT QD in a

magnetic field. Red and blue lines represent, respectively, orbital states shifting up, jþl,
and down, j2l, in energy. Dashed and solid lines represent spin-up and spin-down
states, respectively. The yellow rectangle highlights the region where a purely orbital

Kondo effect can occur because of a level-crossing (at B ¼ B 0) between spin-polarized

states. The green rectangle highlights the SU(4) Kondo region. e, Close-up of the yellow

rectangle in d. A finite coupling, dB, between jþl and j2l states causes an anticrossing
(black lines). At high B, dB is smaller than the Zeeman splitting, gmBB.
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which corresponds to adding the last electron to a j2l or jþl orbital,
respectively. When the ground-state configuration of the QD
changes, kinks appear in the B-evolution of the Coulomb peaks.
The two enhanced-conductance ridges at B ¼ B0 , 6 T, bounded
by two such kinks and highlighted by dotted yellow lines, are due to
the crossing between j2l and jþl states as described in Fig. 1d. A
detailed analysis (see Supplementary Information) indicates that
along these ridges the QD ground state is doubly degenerate,
with the last added electron occupying the level crossing between
jþ, " l and j2, " l (left ridge) or between jþ, # l and j2, # l (right
ridge).
In the region near the degeneracy point, we are able to measure a

small coupling between orbital states21, resulting in level repulsion
at B ¼ B 0. The energy splitting is directly observed in the
spectroscopy data of Fig. 2b, where the differential conductance,
dI/dV, is shown as a function of B and bias voltage, V. In this
measurement VG and B are simultaneously varied to follow the
middle of the Coulomb valley (dashed blue line in Fig. 2a). Here,
single-electron tunnelling is suppressed and the spectroscopy is
based on higher-order co-tunnelling processes, which lead to an
enhancement of dI/dV every time that V equals an internal exci-
tation energy23. We focus on the high-B region of Fig. 2b. As B is
swept across B 0, the anticrossing between jþ, # l and j2, # l
(depicted in Fig. 1e) shows up in the two dI/dV ridges highlighted
by dashed yellow lines. The level spacing, corresponding to half the
distance between these lines, reaches aminimumvalue dB ¼ 225 mV
at B ¼ B0 ¼ 5.9 T. In a measurement of dI/dV against (V,VG) at
5.9 T, shown in Fig. 2c, the higher-order peaks appear as horizontal
ridges inside the Coulomb diamond. Their spacing, 2dB, is inde-
pendent of VG, whereas their height increases towards the edges of
the diamond.
An individual trace of dI/dV against V taken in the middle of the

diamond is shown in Fig. 2d, together with traces measured at
higher temperature, T. The strong overshoot of the dI/dV peaks and
their log-T dependence (inset) indicate an important contribution
from Kondo correlations. The observed behaviour is characteristic
of a split Kondo resonance—that is, a Kondo resonance associated
with two quasi-degenerate states—in line with recent theoretical
predictions24 and experiments25. It is important to note that the
Zeeman spin splitting, EZ ¼ gmBB0; is three times dB, indicating that
the Kondo effect originates entirely from orbital correlations
occurring at the crossing between two spin-polarized states,
jþ, # l and j2, # l. This conclusion is in agreement with the zero-
field data that we show below. The large Zeeman splitting also
ensures that the observed orbital Kondo resonance provides a
conducting channel only for j # l electrons, thereby acting as a
high-transmission spin filter12–14. In contrast, the conductance
enhancement that occurs for three-electron shell filling originates
from jþ, " l and j2, " l states and hence it allows only the tunnelling
of j " l electrons. Switching from one degeneracy to the other is
controlled by simply switching the gate voltage, which then causes
the CNT QD to operate as a bipolar spin filter.

We now centre our attention on the zero-field regime, in which
both orbital and spin degeneracies are expected (green rectangle in
Fig. 1d). The Coulomb oscillations corresponding to the filling of a
single shell are shown in Fig. 3a for a different CNTQD device. The
four oscillations are clearly visible at 8 K (red trace). At lower T, the
conductance exhibits a pronounced enhancement in regions I and
III—that is, for 1 and 3 electrons on the shell—and the correspond-
ing Coulomb blockade valleys disappear completely at 0.3 K (black
trace). This conductance enhancement is a hallmark of Kondo
correlations. From the T-dependence (fully shown in the Sup-
plementary Information) we estimate that TK ¼ 7.7 K, an unu-
sually high value that can be ascribed to the enhanced degeneracy11.

 

 

 

Figure 2 Orbital Kondo effect. a, Colour-scale representation of the linear conductance,

G, versus B and V G at T , 30mK (G increases from dark blue to dark red). The green

lines highlight the B-evolution of the Coulomb peaks. The dotted yellow lines highlight

regions of enhanced conductance due to Kondo effect. Roman labels indicate the number

of electrons on the last occupied shell near B ¼ 0. Orange numbers indicate the spin of

the ground state. Inset: device scheme. Carbon nanotubes were grown by chemical

vapour deposition on p-type silicon substrates with a surface oxide 250 nm thick.

Individual nanotubes were located by atomic force microscopy and contacted with Ti/Au

electrodes (typical separation,100–800 nm) defined by e-beam lithography. The highly

doped silicon substrate was used as a back-gate. b, Colour-scale plot of the differential

conductance, dI /dV, against V and B along the dashed blue line in a. The field splits the

Kondo resonance into multiple peaks. The two orange lines highlight the evolution of the

peaks associated with the spin and orbital splitting, respectively. The spectroscopy

features are more pronounced for V , 0, most probably due to asymmetric tunnel

barriers30. The yellow lines highlight the orbital anticrossing at B ¼ B 0 ¼ 5.9 T.

c, Coulomb diamond for one electron on the last occupied shell at B ¼ 5.9 T. d, Plot of

dI /dV against V with varying T, from 25mK (thick blue trace) to 1.1 K (thick red trace), at

the anticrossing point (B ¼ 5.9 T, V G ¼ 937mV). Orbital splitting, dB, and Zeeman

splitting, EZ , are compared visually. The split Kondo peaks decrease with increasing T.

Inset: plot of peak height against T evaluated for the left peak.
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The important contribution of the orbital degree of freedom
becomes apparent from the B-dependence of G (Fig. 3e, f). If this
Kondo effect were determined by spin only (this could be the case if
one of the orbitals was coupled weakly to the leads), G should
decrease on a field scale B , kBTK/gmB , 6 T due to Zeeman
splitting26. In contrast, G decays on a much smaller scale,
B , kBTK/2m orb , 0.5 T, which is determined by the orbital
splitting (an estimate of the orbital magnetic moment, morb, is
given below).

In the nonlinear regime, a single zero-bias Kondo resonance
appears in regions I and III (Fig. 3b). Contrary to the result in Fig. 2c,
no orbital splitting is observed because of the much larger TK

(kBTK . d (refs 12, 13, 21)). In region II we observe two peaks at
finite bias, reflecting the already known splitting of a singlet–triplet
Kondo resonance27. To show that the Kondo resonance in regions I
and III arises from simultaneous orbital and spin Kondo corre-
lations, we investigate the effect of lifting spin and orbital degen-
eracies at finite B. As opposed to an ordinary spin-12 Kondo system
(where the Kondo resonance splits in two peaks, separated by twice
the Zeeman energy3–9) we find a fundamentally different splitting.
At B ¼ 1.5 T (Fig. 3c), multiple split peaks appear in regions I and
III as ridges of enhanced dI/dV parallel to the VG axis. In region I,

the large zero-bias resonance opens up in four peaks that move
linearly with B and become progressively smaller (Fig. 3d). The two
inner peaks are due to Zeeman splitting, that is, to higher-order co-
tunnelling from j2, " l to j2, # l (j2l is the lower-energy orbital).
The two outer peaks arise from co-tunnelling from orbital j2l to
orbital jþl. In the latter case, inter-orbital co-tunnelling processes
can occur either with or without spin flip. (However, the corre-
sponding substructure21 is not resolved owing to the broadening of
the outer peaks.) Similar multiple splittings of the Kondo resonance
have also been observed in several other samples. According to
recent calculations28, the observed multiple splitting of the Kondo
resonance constitutes direct evidence of SU(4) symmetry, which
implies the concomitant presence of spin as well as orbital Kondo
correlations, confirming our previous finding.
The slope jdV/dBj of a conductance peak (Fig. 3d) directly yields

the value of the magnetic moment associated with the splitting.
We obtain a spin magnetic moment mspin ¼

1
2jdV=dBjspin ¼

0:06meVT21 , mB from the inner peaks, and an orbital magnetic
moment morb ¼

1
2jdV=dBjorb=cosJ¼ 0:8meVT21 , 13mB from the

outer peaks (J is the angle between the nanotube and B)17. The same
value of morb follows from the splitting of the Kondo resonance in
region III (Fig. 3c). In this case, however, no Zeeman splitting is
observed. Here, the magnetic field induces a transition from SU(4)
to a spin-based SU(2) Kondo effect for which kBTK remains larger
than the Zeeman energy, hindering the splitting of the Kondo
resonance up to a few teslas. Finally, we note that both the one-
electron SU(4) and the two-electron singlet–triplet Kondo effects
are characterized by a fourfold degeneracy, which results in an
enhanced TK (ref. 27). Apart from this, the two phenomena are
fundamentally very different. The singlet–triplet Kondo effect is a
spin phenomenon in which the role of the orbital degree of
freedom is simply to provide the basis for the construction of
spin-singlet and triplet two-particle states (see also Supplementary
Information).
Because orbital Kondo correlations can arise only if the orbital

quantum number is conserved during tunnelling, our experimental
finding of orbital Kondo physics in CNT QDs raises an interesting
question concerning the nature of the dot–lead coupling. In our
devices, the metal contacts are deposited on top of the CNTand the
QD is formed in the segment between them29. It is possible that
when electrons tunnel out of the QD, they enter first the nanotube
section underneath the contacts, where they dwell for some time
before moving into the metal. Because the orbital quantum
number is probably conserved in a CNT–CNT tunnel process,
this intermediate step may account for the observed orbital
Kondo effect. A
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Gas-phase materials are used in a variety of laser-based appli-
cations—for example, in high-precision frequency measure-
ment1,2, quantum optics and nonlinear optics3,4. Their full
potential has however not been realized because of the lack of a
suitable technology for creating gas cells that can guide light over
long lengths in a single transversemode while still offering a high
level of integration in a practical and compact set-up or device. As
a result, solid-phase materials are still often favoured, even when
their performance compares unfavourably with gas-phase sys-
tems. Here we report the development of all-fibre gas cells that
meet these challenges. Our structures are based on gas-filled
hollow-core photonic crystal fibres, in which we have
recently demonstrated substantially enhanced stimulated

Raman scattering5,6, and which exhibit high performance, excel-
lent long-term pressure stability and ease of use. To illustrate the
practical potential of these structures, we report two different
devices: a hydrogen-filled cell for efficient generation of
rotational Raman scattering using only quasi-continuous-wave
laser pulses; and acetylene-filled cells, which we use for absolute
frequency-locking of diode lasers with very high signal-to-noise
ratios. The stable performance of these compact gas-phase
devices could permit, for example, gas-phase laser devices incor-
porated in a ‘credit card’ or even in a laser pointer.

Our all-fibre gas cells consist of hollow-core photonic crystal fibre
(HC-PCF) filled with gas and spliced hermetically at both ends to
standard single-mode optical fibre (SMF) (Fig. 1a, d). These novel
devices have no bulk-optics components, and may be used with a
wide range of commercially available optical fibre components
(such as couplers, filters, mirrors and lasers). Moreover, the use of
HC-PCF in which light is guided in a single transverse mode
by means of a photonic bandgap created in the ‘photonic
crystal’ cladding7 greatly increases the efficiency of these laser–gas
devices5,6.

The high air-filling fraction of the HC-PCFs (which are formed
by a network of glass webs typically just a few hundred nanometres
thick) makes it very challenging to fusion-splice these fibres without
collapsing and deforming the microstructure, which would give a
high insertion loss. It is also important to avoid contaminating
the PCF with solid deposits and water. Nevertheless, after some
practice, routine splicing of HC-PCF to SMF was achieved with a
typical loss of 1–2 dB. We estimate that a perfect splicing procedure
using our fibres would yield a loss of 0.6–0.8 dB. Of this, 0.15 dB
arises from the refractive index mismatch between the fibre cores,
and is therefore fundamental. The rest is due to modal field
mismatch, which we estimate by the butt-joint approximation8 to
be 0.4–0.6 dB. The discrepancy between estimated and achieved
splice losses is linked to the formation of a recess in the end face of
the HC-PCF when heated in the splicer (Fig. 1b). We believe this
results from the action of surface tension along the many glass–air
interfaces within the holey structure, the viscosity of which offers
much less resistance to deformation than the solid glass in the outer
cladding of the fibre. The mechanical strength of the splices is

Figure 1 HC-PCF-based gas-cell assembly. a–c, Images obtained using a scanning

electron microscope. a, Side view of a 1,550 nm HC-PCF (the narrower fibre) spliced to an

SMF. b, End view of an HC-PCF cleaved at the junction of the splice. The recess, which

creates an air gap of a few tens of micrometres between the fibre cores, is due to the

action of surface tension during fusion. c, View of the same piece of HC-PCF as in a and b

but cleaved a few millimetres from the splice, showing clearly the preservation of the

microstructural integrity. d, Photograph of a 5-m-long hydrogen-filled HC-PCF gas cell,

showing its size compared to that of a match.
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