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1. Energy levels of a two-electron double quantum dot 

To understand the transitions observed in Fig. 3 and the anisotropy in Fig. 4, we apply a model 

incorporating valley and spin energy levels, electrostatic energy, and Coulomb interaction effects.  

1.1 Single-particle spectrum in a single quantum dot

The low-energy single-particle spectrum of an infinitely long nanotube in an applied magnetic 

field B results from the sum of spin energies, orbital energies and spin-orbit coupling. Neglecting 

disorder, the Hamiltonian is1:  = 			 ∙  + 		 ∙  +					 ∙  , (1)

vi and si are the Pauli matrices in respectively valley (K, K’) and spin (↓, ↑) degrees of freedom, 	 is 

the Bohr magneton,  = 2 is the electron spin g-factor, and  is the unit vector along the nanotube 

axis. With the magnetic field Bz applied along a straight nanotube, the single-particle energies are: , ,  =  			 + 		 +				 , (2)

v = +1 (-1) corresponds to valley state K’ (K) and s = +1 (-1) corresponds to spin state ↓ (↑).  

A nanotube of finite length becomes a quantum dot with quantization of the longitudinal 

momentum. Each quantized longitudinal mode is called a shell and contains four states, because valley 

and spin each take two values. Fig. S1a shows the Bz-dependence of the single-particle energies within 

a single shell (ignoring charging energies). The energy difference between two consecutive shells is 

defined as the shell level spacing . 
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Figure S3 | Energy levels for the (2,0) ���� (1,1) transition. a, Two-electron energy levels of the (1,1) 

charge states as a function of Bz. (The levels are offset by the charging energy EC.) Of the sixteen 

states, four (in color) are important for our measurements. The energy difference between TK↓K� and 

SK↓K’� at zero field is defined as I��. b, Detunings as a function of Bz for the possible transitions from 

the initial state SK↓K’�(2,0) to the sixteen (1,1) states. The zero of detuning is defined by the alignment 

of SK↓K’�(2,0) with SK↓K’�(1,1). c, Same as b, but with the initial state SK↓K�(2,0). d, Detuning as a 

function of Bz for the identified transitions in Fig. 3d. SK↓K� takes over from SK↓K’� as the (2,0) 

ground state at field ~ 1 T, resulting in a kink for the lowest transitions (black). 
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1.4 Including disorder  

To obtain an optimal comparison with the transitions in Fig. 3c and f, we incorporate the valley-

mixing term �UU´  into equation (1)1. Defining θ as the angle between the magnetic field and the 

nanotube axis and using K’↓, K↑, K’↑, K↓ as the basis, the Hamiltonian becomes6: 

 � = 12��	�	(W
cosX 0 sin X 00 − cosX 0 sinXsin X 0 − cos X 00 sinX 0 cosX[ + ����( cosX W

1 0 0 00 −1 0 00 0 1 00 0 0 −1[
+ 12W

��� 0 0 �UU´0 ��� �UU´ 00 �UU´ −��� 0�UU´ 0 0 −���[ 

(11) 

The single-particle energies are obtained by numerically diagonalizing the Hamiltonian of 

equation (11). The calculated curves in Fig. 3c and f are then obtained following the same procedure 

as described in the previous section. �UU´ is extracted from the data described in Section 6. 

 

 

Figure S4 | Single-particle energies including disorder. The levels are calculated using equation 

(11) with the experimental values ��� = 1.6	meV,	�UU´ = 0.25	meV, and ���� = 0.9	meV/T. 
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2. Selection rules for valley-spin relaxation 

To investigate the selection rules for the observed valley-spin relaxation transitions, we discuss 

here several mechanisms that can cause valley-spin relaxation: spin-orbit interaction1,7,8,9, intervalley 

scattering10, and hyperfine interaction with the nuclei8. 

The six possible (1,1) � (2,0) transitions are listed in Table S3. Note that the valley-spin 

symmetry of the two-electron state is not conserved for these transitions. For the opposite bias 

direction, we only list the observed and identified transitions for clarity (Table S4). Three out of five 

transitions involve a change of symmetry. Several other transitions are visible for higher detunings in 

Fig, 3d, but could not be identified because they overlap. Therefore (2,0) � (1,1) transitions that are 

not listed in Table S3 cannot be classified as not observed. 

 

Table S3 | Selective valley-spin relaxation for the (1,1) ���� (2,0) transitions. 

(1,1) state (2,0) state Valley-spin 

symmetry change 

Number of valley-

flips 

Number of spin-

flips 

Transition 

observed 

TK↓K↓ SK↓K’↑ yes 1 1 yes 

TK↓K↓ SK↓K↑ yes 0 1 yes 

TK↓K↓ SK↑K’↑ yes 1 2 no 

TK↓K↓ SK↓K’↓ yes 1 0 no 

TK↓K↓ SK’↑K’↓ yes 2 1 no 

TK↓K↓ SK↑K’↓ yes 1 1 yes 

 
 
Table S4 | Observed and identified (2,0) ���� (1,1) transitions. 

(2,0) state (1,1) state Valley-spin 

symmetry change 

Number of valley-

flips 

Number of spin-

flips 

SK↓K’↑ SK↓K’↑ no 0 0 

SK↓K’↑ SK↓K↑ no 1 0 

SK↓K’↑ TK↓K↓ yes 1 1 

SK↓K’↑ TK’↑K’↑ yes 1 1 

SK↓K↑ TK↓K↓ yes 0 1 

 
 

 

  
























