SUPPLEMENTARY INFORMATION

DOI: 10.1038/NNANO.2013.5

1

Electrical control of single hole spins in nanowire quantum dots

V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard,
E. P. A. M. Bakkers and L. P. Kouwenhoven

Contents:

1.	Bandgap of InSb nanowires	2
2.	Origin of the background triangles in Fig. 3b	3
3.	Zeeman splitting of QD lead resonances	4
4.	Spin blockade data in the weak coupling regime	5
5.	Comparison of hyperfine coupling strength between holes and electrons	6
6.	Additional measurements of the angular dependence of spin blockade in the strong coupling regime	7
7.	Method for extracting the g-factors	8

1. Bandgap of InSb nanowires

We extract the bandgap of our InSb nanowires using the basic device described in Fig. 1 of the main text. On the left side of Fig. S1, the Fermi level is in the valence band, resulting in a finite current away from zero bias. At less negative $V_{\rm BG}$, the Fermi level is inside the bandgap and the current is suppressed. On the right side of the figure, at even less negative $V_{\rm BG}$, current is restored as the Fermi level moves into the conduction band. We extract the bandgap, ~ 0.2 eV, from the extent of the non-conducting region, as shown by the arrow in Fig. S1. This value is in agreement with the gap of bulk InSb (~ 0.17 eV at room temperature and ~ 0.23 eV at low temperatures [1]), and is confirmed by similar measurements in one other InSb nanowire device.

Fig. S1: Current through an InSb nanowire as a function of V_{SD} and V_{BG} .